跳跃表是一种插入、查询、删除的平均时间复杂度为O(nlogn)的数据结构,在最差情况下是O(n),当然这几乎很难出现。
和红黑树相比较
最差时间复杂度要差很多,红黑树是O(nlogn),而跳跃表是O(n)
平均时间复杂度是一样的
实现要简单很多
维基的跳跃表例子

跳跃表的结构如上图
跳跃表的实现还是一个链表,是一个有序的链表,在遍历的时候基于比较,但普通链表只能遍历,跳跃表加入了一个层的概念,层数越高的元素越少,每次先从高层查找,再逐渐降层,直到找到合适的位置。从图中可以看到高层的节点远远少于底层的节点数,从而实现了跳跃式查找。
redis中的定义
/*
 * 跳跃表
 */
typedef struct zskiplist {
    // 表头节点和表尾节点
    struct zskiplistNode *header, *tail;
    // 表中节点的数量
    unsigned long length;
    // 表中层数最大的节点的层数
    int level;
} zskiplist;
跳跃表的节点
/*
 * 跳跃表节点
 */
typedef struct zskiplistNode {
    // 成员对象
    robj *obj;
    // 分值
    double score;
    // 后退指针
    struct zskiplistNode *backward;
    // 层
    struct zskiplistLevel {
        // 前进指针
        struct zskiplistNode *forward;
        // 跨度
        unsigned int span;
    } level[];
} zskiplistNode;
跳跃表是一个空间换时间的数据结构,和双链表相比,额外的空间开销就是zskiplistNode中的level数组元素,冗余存储了每一层的forward指针。
redis跳跃表实现的一些方法
zslCreateNode
zslCreate
zslFreeNode
zslFree
zslRandomLevel
zslInsert
zslDeleteNode
zslDelete
还有其他一些
重点关注几个方法
/*
 * 创建并返回一个新的跳跃表
 *
 * T = O(1)
 */
zskiplist *zslCreate(void) {
    int j;
    zskiplist *zsl;
    // 分配空间
    zsl = zmalloc(sizeof(*zsl));
    // 设置高度和起始层数
    zsl->level = 1;
    zsl->length = 0;
    // 初始化表头节点
    //表头一定具有最高的level
    // T = O(1)
    zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
    for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
        zsl->header->level[j].forward = NULL;
        zsl->header->level[j].span = 0;
    }
    zsl->header->backward = NULL;
    // 设置表尾
    zsl->tail = NULL;
    return zsl;
}
//返回一个随机值,作为新跳跃表节点的层次
//层次的合理分布是跳跃表的效率所在
int zslRandomLevel(void) {
    int level = 1;
    while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
        level += 1;
    return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
/*
 * 创建一个成员为 obj ,分值为 score 的新节点,
 * 并将这个新节点插入到跳跃表 zsl 中。
 * 
 * 函数的返回值为新节点。
 *
 * T_wrost = O(N^2), T_avg = O(N log N)
 */
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
    zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
    unsigned int rank[ZSKIPLIST_MAXLEVEL];
    int i, level;
    redisAssert(!isnan(score));
    // 在各个层查找节点的插入位置
    // T_wrost = O(N^2), T_avg = O(N log N)
    x = zsl->header;
    for (i = zsl->level-1; i >= 0; i--) {
        /* store rank that is crossed to reach the insert position */
        // 如果 i 不是 zsl->level-1 层
        // 那么 i 层的起始 rank 值为 i+1 层的 rank 值
        // 各个层的 rank 值一层层累积
        // 最终 rank[0] 的值加一就是新节点的前置节点的排位
        // rank[0] 会在后面成为计算 span 值和 rank 值的基础
        rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
        // 沿着前进指针遍历跳跃表
        // T_wrost = O(N^2), T_avg = O(N log N)
        while (x->level[i].forward &&
            (x->level[i].forward->score < score ||
                // 比对分值
                (x->level[i].forward->score == score &&
                // 比对成员, T = O(N)
                compareStringObjects(x->level[i].forward->obj,obj) < 0))) {
            // 记录沿途跨越了多少个节点
            rank[i] += x->level[i].span;
            // 移动至下一指针
            x = x->level[i].forward;
        }
        // 记录将要和新节点相连接的节点
        update[i] = x;
    }
    /* we assume the key is not already inside, since we allow duplicated
     * scores, and the re-insertion of score and redis object should never
     * happen since the caller of zslInsert() should test in the hash table
     * if the element is already inside or not. 
     *
     * zslInsert() 的调用者会确保同分值且同成员的元素不会出现,
     * 所以这里不需要进一步进行检查,可以直接创建新元素。
     */
    // 获取一个随机值作为新节点的层数
    // T = O(N)
    level = zslRandomLevel();
    // 如果新节点的层数比表中其他节点的层数都要大
    // 那么初始化表头节点中未使用的层,并将它们记录到 update 数组中
    // 将来也指向新节点
    if (level > zsl->level) {
        // 初始化未使用层
        // T = O(1)
        for (i = zsl->level; i < level; i++) {
            rank[i] = 0;
            update[i] = zsl->header;
            update[i]->level[i].span = zsl->length;
        }
        // 更新表中节点最大层数
        zsl->level = level;
    }
    // 创建新节点
    x = zslCreateNode(level,score,obj);
    // 将前面记录的指针指向新节点,并做相应的设置
    // T = O(1)
    for (i = 0; i < level; i++) {
        // 设置新节点的 forward 指针
        x->level[i].forward = update[i]->level[i].forward;
        // 将沿途记录的各个节点的 forward 指针指向新节点
        update[i]->level[i].forward = x;
        /* update span covered by update[i] as x is inserted here */
        // 计算新节点跨越的节点数量
        x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
        // 更新新节点插入之后,沿途节点的 span 值
        // 其中的 +1 计算的是新节点
        update[i]->level[i].span = (rank[0] - rank[i]) + 1;
    }
    /* increment span for untouched levels */
    // 未接触的节点的 span 值也需要增一,这些节点直接从表头指向新节点
    // T = O(1)
    for (i = level; i < zsl->level; i++) {
        update[i]->level[i].span++;
    }
    // 设置新节点的后退指针
    x->backward = (update[0] == zsl->header) ? NULL : update[0];
    if (x->level[0].forward)
        x->level[0].forward->backward = x;
    else
        zsl->tail = x;
    // 跳跃表的节点计数增一
    zsl->length++;
    return x;
}
跳跃表查找节点的过程(以插入元素为例,删除、查找的过程是一样的)
1.从head开始,根据forward指针向前查找,如果前一个元素大于待查找的元素或者遇到tail指针,下移层次继续查找;如果下一个元素不大于待查找的元素,forward向前推进一个节点,继续比较。
2.重复1步骤,直到level1遇到的前一个节点的值大于待查找的值
最终总是能找到比待查找节点的值大的前一个位置,在这个位置插入元素。

redis的跳跃表的更多相关文章

  1. redis skiplist (跳跃表)

    redis skiplist (跳跃表) 概述 redis skiplist 是有序的, 按照分值大小排序 节点中存储多个指向其他节点的指针 结构 zskiplist 结构 // 跳跃表 typede ...

  2. Redis数据结构—跳跃表

    目录 Redis数据结构-跳跃表 跳跃表产生的背景 跳跃表的结构 利用跳跃表查询有序链表 Redis跳跃表图示 Redis跳跃表数据结构 小结 Redis数据结构-跳跃表 大家好,我是白泽,最近学校有 ...

  3. Redis(2)——跳跃表

    一.跳跃表简介 跳跃表(skiplist)是一种随机化的数据结构,由 William Pugh 在论文<Skip lists: a probabilistic alternative to ba ...

  4. 【Redis】跳跃表原理分析与基本代码实现(java)

    最近开始看Redis设计原理,碰到一个从未遇见的数据结构:跳跃表(skiplist).于是花时间学习了跳表的原理,并用java对其实现. 主要参考以下两本书: <Redis设计与实现>跳表 ...

  5. redis 系列7 数据结构之跳跃表

    一.概述 跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的.在大部分情况下,跳跃表的效率可以和平衡树(关系型数据库的索引就是平衡树 ...

  6. [Redis]Redis的设计与实现-链表/字典/跳跃表

    redis的设计与实现:1.假如有一个用户关系模块,要实现一个共同关注功能,计算出两个用户关注了哪些相同的用户,本质上是计算两个用户关注集合的交集,如果使用关系数据库,需要对两个数据表执行join操作 ...

  7. redis 笔记01 简单动态字符串、链表、字典、跳跃表、整数集合、压缩列表

    文中内容摘自<redis设计与实现> 简单动态字符串 1. Redis只会使用C字符串作为字面量,在大多数情况下,Redis使用SDS(Simple Dynamic String,简单动态 ...

  8. Redis底层探秘(二):链表和跳跃表

    链表简介 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地跳转链表的长度. 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用C语言并没有内 ...

  9. Redis实现之字典跳跃表

    跳跃表 跳跃表是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的.跳跃表支持平均O(logN).最坏O(N)的时间复杂度查找,还可以通过顺序性操作来批量处理节 ...

随机推荐

  1. LINUX - .so 与 .a

    .a gcc -c test1.c test2.c(或者g++ -c test1.cpp test2.cpp  )---   .o ar -r libtest.a test1.o test2.o    ...

  2. nyoj22-素数求和问题

    素数求和问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 现在给你N个数(0<N<1000),现在要求你写出一个程序,找出这N个数中的所有素数,并求和. ...

  3. NOIP2009 T2 Hankson的趣味题

    传送门 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上, ...

  4. Selenium调用JavaScript修改元素属性

    修改元素的style,主要是将一些隐性元素显示出来,让元素可被操作: JavascriptExecutor  js = (JavascriptExecutor)driver; js.executeSc ...

  5. orcale 查询

    修改日期显示形式: alter session set nls_date_formate='DD-MON-RR'; alter session set nls_date_formate='yyyy-M ...

  6. Linux文字分段裁剪命令cut(转)

    Linux cut命令用于显示每行从开头算起num1到num2的文字. 语法 cut [-bn] [file] cut [-c] [file] cut [-df] [file] 使用说明: cut命令 ...

  7. caffe中的前向传播和反向传播

    caffe中的网络结构是一层连着一层的,在相邻的两层中,可以认为前一层的输出就是后一层的输入,可以等效成如下的模型 可以认为输出top中的每个元素都是输出bottom中所有元素的函数.如果两个神经元之 ...

  8. 图论-BFS解无权有向图最短路径距离

    概述 本篇博客主要内容: 对广度优先搜索算法(Breadth-First-Search)进行介绍: 介绍用邻接表的存储结构实现一个图(附C++实现源代码): 介绍用BFS算法求解无权有向图(附C++实 ...

  9. C++中sort()及qsort() (不完整介绍)

    在平时刷算法题和oj的时候,排序算法是最经常用到的算法之一:且在各类算法书的目录中 也通常是将各种排序算法放在最前面来讲,可见排序算法的重要性.可能许多人都在算法书中有学过冒泡.快速排序的方法,也都大 ...

  10. getLocationInWindow getLocationOnScreen getLeft , getTop, getBottom,getRight

    版权声明:本文为博主原创文章,未经博主允许不得转载. 最近做项目时,发现在activity的onCreate()和onResume()方法里调用View.getLocationInWindow() 时 ...