程序参考文章:http://blog.csdn.net/gamesdev/article/details/17535755  程序优化2

简介:CUDA ,MPI,Hadoop都是并行运算的工具。CUDA是基于NVIDIA GPU芯片计算。

阐述:GPU有很多个核(几百个),每个核可以跑一个线程,多个线程组成一个单位叫做块。

举个例子:

有三个向量 int a, b, c; 我们要计算a和b的向量之和存放到c中。

一般C语言:for(int i=0; i<10; i++)  c = a + b; 这个程序是顺序执行的!

CUDA编程做法:

GPU中的每个线程(核)有一个独立序号叫index,那么只要序号从0到9的线程执行c[index] = a[index] + b[index]; 就可以实现以上的for循环。

GPU的可贵之处就是,可以并发运行多个线程,相当于一个时间内赋值10次。

////////////////////////
cuda.cu
////////////////////////
#include <stdio.h>
#include <cuda_runtime.h> //运行在GPU
__global__ void vectorADD(int* a, int* b, int* c)
{
int index = threadIdx.x; //获得当前线程的序号
if(index < blockDim.x)
c = a + b;
}
int main ()
{
//定义10个GPU运算线程
int N = 10;
// 本地开辟三个数组存放我们要计算的内容
int* h_a = (int*) malloc (N * sizeof(int));
int* h_b = (int*) malloc (N * sizeof(int));
int* h_c = (int*) malloc (N * sizeof(int));
// 初始化数组A, B和C
for(int i=0; i<N; i++) {
h_a = i;
h_b = i;
h_c = 0;
}
// 计算10个int型需要的空间
int size = N * sizeof(int);
// 在GPU上分配同样大小的三个数组
int* d_a;
int* d_b;
int* d_c;
cudaMalloc((void**)&d_a, size);
cudaMalloc((void**)&d_b, size);
cudaMalloc((void**)&d_c, size); // 把本地的数组拷贝进GPU内存
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_c, h_c, size, cudaMemcpyHostToDevice); // 定义一个GPU运算块 由 10个运算线程组成
dim3 DimBlock = N;
// 通知GPU用10个线程执行函数vectorADD
vectorADD<<<1, DimBlock>>>(d_a, d_b, d_c);
// 将GPU运算完的结果复制回本地
cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);
// 释放GPU的内存
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
// 验证计算结果
for(int j=0; j<N; j++)
printf("%d ", h_c);
printf("\n");
}

警告!:这个例子是编译不通过的;

首先:对 threadidx的使用,只能在CU文件里面;

其次:在cu文件里初始化数组是错误的: int * a ; a = new int [x];是错误的;  并且 malloc也是不可以的;

再者:文件路径里面不能包含中文,否则会出现 MSB8791 这种错误!

2. 利用CUDA并行计算点云法线

两个函数都存在于CU文件里! 通过外部CPP文件函数进行调用

void normalEstimate(
pcl::PointCloud<pcl::PointXYZRGB> &input ,
pcl::PointCloud<pcl::PointXYZRGB> &output,
int k_,
float search_parameter_,
int THREAD_NUM
)

//运行在GPU//cal the Normal

__global__ void normalEstimateSingle(pcl::PointCloud<pcl::PointXYZRGB> &input ,pcl::PointCloud<pcl::PointXYZRGB> &output, int* nn_indices ,int*   nn_dists, int Gap, float search_parameter_)
{
const size_t computeSize =input.size() / Gap;
const size_t tID = size_t(threadIdx.x );
int Mark;
clock_t startTime; // 开始计时
if ( tID == 0 ) startTime =clock( );// 选择任意一个线程进行计时
//Thread loop!//循环发现邻域!寻找法线!
for ( size_t idx = tID *computeSize; idx < ( tID + 1 ) * computeSize && idx < input.size(); ++idx ) {
// pOut[threadIdx.x] += pIn[i] * pIn[i];
Mark = pcl::searchForNeighbors (idx, search_parameter_, nn_indices, nn_dists);//对第IDX个建立索引!
if (Mark == 0){
output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
continue;
}
else {
if (!isFinite (input[idx]) || Mark == 0){
output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
continue;
}
}
pcl::computePointNormal (input, nn_indices,output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2], output.points[idx].curvature);
 pcl::flipNormalTowardsViewpoint (input_->points[idx], vpx_, vpy_, vpz_,
output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]); }
if ( tID == 0 ) *pElapsed =clock( ) - startTime;// 结束计时,返回至主程序
}

//运行在CPU端!

// as the input
extern "C" void normalEstimate(
pcl::PointCloud<pcl::PointXYZRGB> &input ,
pcl::PointCloud<pcl::PointXYZRGB> &output,
int k_,
float search_parameter_,
int THREAD_NUM
)
{
// 在GPU上分配同样大小的三个数组
pcl::PointCloud<pcl::PointXYZRGB> &inputX ;
pcl::PointCloud<pcl::PointXYZRGB> &outputX;
int* nn_indices ;
int* nn_dists; // 1、设置设备
cudaError_t cudaStatus = cudaSetDevice( 0 );// 只要机器安装了英伟达显卡,那么会调用成功
if ( cudaStatus != cudaSuccess )
{
fprintf( stderr, "调用cudaSetDevice()函数失败!" );
return ;//false;
} // 使用CUDA内存分配器分配host端
//cudaError_t cudaStatus = cudaMallocHost( &inputX, input.size() * sizeof( pcl::pointXYZRGB ) );
//cudaError_t cudaStatus = cudaMallocHost( &outputX, output.size() * sizeof( pcl::Normal ) ); // 2、分配显存空间
cudaError_t cudaStatus = cudaMalloc( &inputX, input.size() * sizeof( pcl::pointXYZRGB ) );
cudaError_t cudaStatusX = cudaMalloc( &outputX, output.size() * sizeof( pcl::Normal ) ); // cudaStatus = cudaMalloc( (void**)&pData, DataSize * sizeof( int) );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "调用cudaMalloc()函数初始化显卡中数组时失败!" );
break;
} // 3、将宿主程序数据复制到显存中
cudaError_t cudaStatus2 = cudaMemcpy( inputX, input, input.size() * sizeof( pcl::pointXYZRGB ),cudaMemcpyHostToDevice );
cudaError_t cudaStatusX2 = cudaMemcpy(outputX,output,output.size() * sizeof( pcl::pointXYZRGB ),cudaMemcpyHostToDevice );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "调用cudaMemcpy()函数初始化宿主程序数据数组到显卡时失败!" );
break;
} //cudaMalloc( (void**)&nn_dists, k_ * sizeof( int) );
//cudaMalloc( (void**)&nn_indices, k_ * sizeof( int) );
//cudaMalloc( (void**)&Normal3f, 3 * sizeof( float) ); // 4、执行程序,宿主程序等待显卡执行完毕
normalEstimateSingle<<<1, THREAD_NUM>>>( inputX,outputX, nn_indices, nn_dists, THREAD_NUM ,search_parameter_);
//normalEstimateSingle(pcl::PointCloud<pcl::PointXYZRGB> &input ,pcl::PointCloud<pcl::PointXYZRGB> &output, int* nn_indices ,int* nn_dists, int Gap) // 5、查询内核初始化的时候是否出错
cudaStatus = cudaGetLastError( );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "显卡执行程序时失败!" );
break;
} // 6、与内核同步等待执行完毕
cudaStatus = cudaDeviceSynchronize( );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "在与内核同步的过程中发生问题!" );
break;
} // 7、获取数据 //只复制出法线即可!
cudaStatus = cudaMemcpy(output,outputX,output.size() * sizeof( pcl::pointXYZRGB ),cudaMemcpyHostToDevice );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "在将结果数据从显卡复制到宿主程序中失败!" );
break;
} cudaFree( outputX );
cudaFree( inputX );
}

注意事项:运行在GPU的函数,只能是原子函数,详情请见 《高性能并行编程实践》

CUDA 编程实例:计算点云法线的更多相关文章

  1. CUDA编程学习笔记1

    CUDA编程模型是一个异构模型,需要CPU和GPU协同工作. host和device host和device是两个重要的概念 host指代CPU及其内存 device指代GPU及其内存 __globa ...

  2. CUDA编程前言

    GPU架构 GPU特别适用于 密集计算,高度可并行计算,图形学 晶体管主要被用于 执行计算,而不是缓存数据,控制指令流 GPU计算的历史 2001/2002 -- 研究人员把GPU当做数据并行协处理器 ...

  3. PHP多进程编程实例

    这篇文章主要介绍了PHP多进程编程实例,本文讲解的是在Linux下实现PHP多进程编程,需要的朋友可以参考下 羡慕火影忍者里鸣人的影分身么?没错,PHP程序是可以开动影分身的!想完成任务,又觉得一个进 ...

  4. c#摄像头编程实例 (转)

    c#摄像头编程实例 摄像头编程 安装摄像头后,一般可以找到一个avicap32.dll文件 这是一个关于设想头的类 using  system;using  System.Runtime.Intero ...

  5. 不同版本CUDA编程的问题

    1 无法装上CUDA的toolkit 卸载所有的NVIDIA相关的app,包括NVIDIA的显卡驱动,然后重装. 2之前的文件打不开,one or more projects in the solut ...

  6. cuda编程基础

    转自: http://blog.csdn.net/augusdi/article/details/12529247 CUDA编程模型 CUDA编程模型将CPU作为主机,GPU作为协处理器(co-pro ...

  7. CUDA学习笔记(一)——CUDA编程模型

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm56.html CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码:另一部分在d ...

  8. CUDA编程

    目录: 1.什么是CUDA 2.为什么要用到CUDA 3.CUDA环境搭建 4.第一个CUDA程序 5. CUDA编程 5.1. 基本概念 5.2. 线程层次结构 5.3. 存储器层次结构 5.4. ...

  9. JAX-RS 2.0 REST客户端编程实例

    JAX-RS 2.0 REST客户端编程实例 2014/01/28 | 分类: 基础技术, 教程 | 0 条评论 | 标签: JAX-RS, RESTFUL 分享到:3 本文由 ImportNew - ...

随机推荐

  1. eas之常用源码整理

    //查看是否有相关权限 boolean hasAllotPermission=         PermissionFactory.getRemoteInstance().hasFunctionPer ...

  2. HTTP 状态码 301 和 302 详解及区别——辛酸的探索之路

    转自:http://blog.csdn.net/grandpang/article/details/47448395 一直对http状态码301和302的理解比较模糊,在遇到实际的问题和翻阅各种资料了 ...

  3. Problem 16

    Problem 16 pow(2, 15) = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.2的15次方等于32768,而这些数 ...

  4. Django-xadmin+rule对象级权限的实现

    原文:https://blog.csdn.net/zcyuefan/article/details/77743380 1. 需求vs现状 1.1 需求要求做一个ERP后台辅助管理的程序,有以下几项基本 ...

  5. APIO 2017 游记

    //第一次写游记,只是流水账...结果好像确实只去游了…… day-11 省选挂了,即将退役……(然而apio之后得知并没有退役,感谢放我一条活路)(吐槽出题人考完才造数据,题目没有子任务之类的玩意, ...

  6. js 跨浏览器获取事件信息模块

    var EventUtil = { addHandler: function(element, type, handler) { if (element.addEventListener) { ele ...

  7. atomikos实现多数据源支持分布式事务管理(spring、tomcat、JTA)

    原文链接:http://iteye.blog.163.com/blog/static/1863080962012102945116222/   Atomikos TransactionsEssenti ...

  8. centos 解压压缩包到指定目录

    解压.tar.gz文件: tar -zxvf web.tar.gz tar不支付解压文件到指定的目录! 解压.war .zip文件到指定目录: unzip web.war -d webapps/ROO ...

  9. CentOS 7通过yum安装fcitx五笔输入法

    CentOS 7通过yum安装fcitx五笔输入法 下面通过了亲測: 1.设置源 Posted in Linux at 三月 5th, 2015 / No Comments ? 增加EPEL源 EPE ...

  10. NYOJ_268_荷兰国旗问题

    荷兰国旗问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:1 描写叙述 荷兰国旗有三横条块构成,自上到下的三条块颜色依次为红.白.蓝.现有若干由红.白.蓝三种颜色的条块序列.要 ...