[CTSC 2008] 祭祀
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=1143
[算法]
答案为最小路径可重复点覆盖所包含的路径数,将原图G进行弗洛伊德传递闭包,得到一张新图G',然后求出拆点二分图G2'的最大匹配,N - 最大匹配 即为答案,我们尝试证明上述结论 :
设祭祀点集合为S,最小路径可重复点覆盖的边集为Path,由于Path覆盖了所有节点,故每条路径上至多选一个点,有 : |S| <= |Path| , 因此,如果我们能构造出一组解,使得| S | = | Path | , 就证明了此结论,这里给出一种构造方案 :
首先求出拆点二分图的最大匹配,设节点x在拆点二分图上分别对应左部节点x和右部节点x' , 对于每个非匹配节点x0,我们不断访问 x0,match[x0'],match[ match[x0'] ] .. 直到最后遇到一个左部节点y0,使得其右部点y0'为非匹配点, 那么就得到了一条路径, 其中y0为起点,x0为
终点,求出这样的所有路径,就得到了| Path |的一种方案,且所有路径不相交,我们现在要将| Path |集合中的每条路径选出一个节点,构成集合| S |
首先我们将所有路径的终点构成一个集合E,根据传递闭包的性质,两个祭祀点之间无路径相连,等价于在新图G’上任意两个祭祀点之间没有边,不妨让集合E中的每个节点走一条边,构成集合Next(E),如果E和Next(E)的交集为空集,则S = E
否则,对于交集中的每个点e,我们沿着e所在的路径不断向上移动,直到e不在当前的交集中,从E中删除e,加入e',重复以上过程,直到交集为空,就求出了S的一种组成方案
可以证明,在任何时刻,我们都能找到合法的e',因为若没有,说明e所在的路径上所有点都可以被其他路径上的点到达,我们可以找到到达e所在的的路径起点的那条路径,将其延伸,使得| Path | 减少1,并覆盖所有节点,与Path的最小性矛盾
综上所述,答案即为最小路径可重复点覆盖所包含的路径数
[代码]
#include<bits/stdc++.h>
using namespace std;
#define MAXN 210 int i,j,k,n,m,u,v,ans;
bool g[MAXN][MAXN],mp[MAXN][MAXN];
bool visited[MAXN];
int match[MAXN]; inline bool hungary(int u)
{
int v;
for (v = ; v <= n; v++)
{
if (mp[u][v] && !visited[v])
{
visited[v] = true;
if (!match[v] || hungary(match[v]))
{
match[v] = u;
return true;
}
}
}
return false;
} int main()
{ scanf("%d%d",&n,&m);
for (i = ; i <= n; i++) g[i][i] = true;
for (i = ; i <= m; i++)
{
scanf("%d%d",&u,&v);
g[u][v] = true;
}
for (k = ; k <= n; k++)
{
for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
g[i][j] |= g[i][k] & g[k][j];
}
}
}
for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
if (i != j && g[i][j])
mp[i][j] = true;
}
}
ans = n;
for (i = ; i <= n; i++)
{
memset(visited,false,sizeof(visited));
if (hungary(i)) ans--;
}
printf("%d\n",ans); return ; }
[CTSC 2008] 祭祀的更多相关文章
- 解题:CTSC 2008 祭祀
题面 洛谷要求输出方案,懒得写了,但是还是放一下链接看看吧 (虽然现在二分图已经过气了=.=) 要求最长反链,最长反链=最小链覆盖,先Floyd传递闭包之后链覆盖就变成了边覆盖,然后最小边覆盖=总点数 ...
- 「CTSC 2008」祭祀
题目链接 戳我 \(Solution\) 第一问 这道题要知道一个叫做\(Dilworth\)的定理 最长反链\(=\)最小链覆盖 证明(\(from\ r\_64\)): 所以我们只要求一个最小链覆 ...
- 【BZOJ 1146】【CTSC 2008】网络管理network
一句话题意,树链上带改动区间第k大 感觉能够dfs+主席树O(nlog2n)过掉,但我不会写= = 于是写的线段树套平衡树+链剖+二分(改动O(nlog3n),查询O(nlog4n)慢了好多啊QAQ) ...
- CTSC&APIO2018游记
Day-1 布吉岛干什么,好像只看了Splay Day0 再次布吉岛干什么,好像也只看了Splay 然后上了火车 wc没买方便面,只能吃40元的盒饭 半夜睡不着,那应该是我太菜了 Day1 九点下火车 ...
- 在离线环境中发布.NET Core至Windows Server 2008
在离线环境中发布.NET Core至Windows Server 2008 0x00 写在开始 之前一篇博客中写了在离线环境中使用.NET Core,之后一边学习一边写了一些页面作为测试,现在打算发布 ...
- Windows Server 2008 R2常规安全设置及基本安全策略
这篇文章主要介绍了Windows Web Server 2008 R2服务器简单安全设置,需要的朋友可以参考下 用的腾讯云最早选购的时候悲催的只有Windows Server 2008 R2的系统,原 ...
- Windows Server 2008 小操作汇总
用惯了Windows2003,去配置2008的时候还真有点摸不着头脑.干脆把有用到的都列在这里,方便后续查找. 一.安装IIS.Telnet 点击:开始 -> 管理工具 -> 服 ...
- Windows 2008 R2 安装sp1时未知错误的解决办法
最近在为Windows Server 2008 R2 打sp1补丁时出现“发生未知错误”,详细信息错误:0x800f0818: google后找到解决问题步骤,参照:http://www.wikiho ...
- 如何在Windows Server 2008 R2没有磁盘清理工具的情况下使用系统提供的磁盘清理工具
今天,刚好碰到服务器C盘空间满的情况,首先处理了临时文件和有关的日志文件后空间还是不够用,我知道清理C盘的方法有很多,但今天只分享一下如何在Windows Server 2008 R2没有磁盘清理工具 ...
随机推荐
- JS高级——浏览器的线程
基本概念 1.js的执行过程是单线程的模式,也就是同步进行,只有前面的代码执行完了才会往下面执行 2.但是执行js代码也只是浏览器的线程之一所负责的事情,这个线程被称为js引擎,浏览器还具有其他线程: ...
- [Windows Server 2012] WordPress安全设置方法
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:WordP ...
- Linux 一些小知识点汇总(持续更新....)
一.符号 1.$@:传递的参数. 2.$# :传递参数的数量. 3.$?:指上一次执行命令后的返回值.一般0表示运行成功. 补充:$?只表示上一个命令执行后的退出状态,当命令执行后,又执行了其他命令, ...
- Java程序员2016年终总结
回顾2016年, 很庆幸,自己能在2016年年尾找到一份满意的web后台开发工作.这也是我学习编程以来第一份开发工作,我很是珍惜. 还记得大三接触了Java的JFrame编写的坦克大战之后,就对编程产 ...
- Lazarus 1.6 增加了新的窗体编辑器——Sparta_DockedFormEditor.ipk
一下是该控件官网的介绍 "Hello A package for a docked form editor can be found in : components/sparta/docke ...
- 查看APK包名签名等信息
有些游戏第三方比如分享需要配置游戏包名和签名,不同渠道包名签名又不同,所以时常需要查看不同apk包等签名信息,之前是使用等微博开放平台的手机客户端查看apk签名,前提是知道包名,网上找了下查看签名和包 ...
- Opencv学习之路——自己编写的HOG算法
#include<opencv2\core\core.hpp> #include<opencv2\highgui\highgui.hpp> #include<opencv ...
- git 的简单使用(4)
多人协作的工作模式通常是这样: 首先,可以试图用git push origin <branch-name>推送自己的修改: 如果推送失败,则因为远程分支比你的本地更新,需要先用git pu ...
- web开发如何使用高德地图API(三)点击热点打开信息窗体
说两句: 以下内容除了我自己写的部分,其他部分在高德开放平台都有(可点击外链访问). 我所整理的内容以实际项目为基础希望更有针对性的,更精简. 点击直奔主题. 准备工作: 首先,注册开发者账号,成为高 ...
- sicily 10330. Cutting Sausages
#include<stdio.h> int main() { int n,m,j,k; while(scanf("%d%d",&n,&m)! ...