题目描述

Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i <= 25,000). The cows are so proud of it that each one now wears her number in a gangsta manner engraved

in large letters on a gold plate hung around her ample bovine neck.

Gangsta cows are rebellious and line up to be milked in an order called 'Mixed Up'. A cow order is 'Mixed Up' if the sequence of serial numbers formed by their milking line is such that the serial

numbers of every pair of consecutive cows in line differs by more than K (1 <= K <= 3400). For example, if N = 6 and K = 1 then 1, 3, 5, 2, 6, 4 is a 'Mixed Up' lineup but 1, 3, 6, 5, 2, 4 is not (since

the consecutive numbers 5 and 6 differ by 1).

How many different ways can N cows be Mixed Up?

For your first 10 submissions, you will be provided with the results of running your program on a part of the actual test data.

POINTS: 200

约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的。这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍。

在一只混乱的队 伍中,相邻奶牛的编号之差均超过K。比如当K = 1时,1, 3, 5, 2, 6, 4就是一支混乱的队伍, 而1, 3, 6, 5, 2, 4不是,因为6和5只差1。请数一数,有多少种队形是混乱的呢?

输入输出格式

输入格式:

 

  • Line 1: Two space-separated integers: N and K

  • Lines 2..N+1: Line i+1 contains a single integer that is the serial number of cow i: S_i

 

输出格式:

 

  • Line 1: A single integer that is the number of ways that N cows can be 'Mixed Up'. The answer is guaranteed to fit in a 64 bit integer.

 

输入输出样例

输入样例#1:

4 1
3
4
2
1
输出样例#1:

2

说明

The 2 possible Mixed Up arrangements are:

3 1 4 2

2 4 1 3

思路:

看到n的范围这么小就能猜到是状态压缩的动态规划。

设f[i][j]为j在二进制表示的那些牛中以第i只牛为尾合法的队形总数,则我们就可以得到动态转移方程f[i][j | (1 << p-1)]  += f[i][j] ,其中f[i][j | (1 << p-1)] 为状态j加上(1 << p-1)这只牛后的状态。其中 1 <= p <= n。

该动态转移方程必须符合以下条件:

状态j中没有包括第p只牛,且abs(s[p]-s[i]) > k。

所以,我们枚举每一个状态,并且在每一个状态中枚举第每一只牛,看这只牛是否在该状态中,如果在,我们则在此情况下进一步枚举,看那一只牛不在当前状态里,找到不在当前状态中的牛之后就进行累加,即为:

                     f[没在当前状态中的牛的输入顺序编号][当前状态加上不在状态中的牛后的新状态]  += f[当前状态的结尾牛输入顺序编号][当前状态];

初始化应该为f[i][1 << i] = 1, 因为,当队列中只有一只牛时最后一只牛的标号就是它本身且此情况上的子问题答案是1。

另外,这题因为答案大,所以要使用longlong,这里用到了条件编译,使得在任何平台下,该程序将不受longlon影响。

下面贴代码,有问题留言。

#include<cstdio>
#define N 1 << 17
#define S 20
using namespace std; long long f[S][N];
int s[]; #ifdef WIN32            //条件编译,省去longlong给程序带来的影响
#define LL "%I64d\n"
#else
#define LL "%lld\n"
#endif int main(){
int n,k;
scanf("%d%d",&n,&k);
for(int i = ; i <= n; i++)scanf("%d",&s[i]);
int mxx = ( << n)-;
for(int i = ; i <= n; i++)f[i][ << (i-)] = ;
for(int i = ; i <= mxx+;i++){                //枚举每一个状态
for(int j = ; j <= n; j++){
if(i & ( << j-)){                //第j只牛是否在状态i中
for(int p = ; p <= n; p++)          //进一步枚举没有在状态i中的牛
if(!(i & ( << p-)) && (s[j]-s[p] > k || s[p]-s[j] > k)){ //如果k不在队列中且差值大于k
f[p][i | ( << p-)] += f[j][i];
}
}
}
}
long long ans = ;
for(int i = ; i <= n; i++)ans += f[i][mxx];
printf(LL,ans);
return ;
}

[USACO08NOV]奶牛混合起来Mixed Up Cows(状态压缩DP)的更多相关文章

  1. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...

  2. 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  3. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  4. [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  5. luogu P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  6. 【题解】Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  7. P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的编号之差均 ...

  8. 洛谷 P2915 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    类似于n皇后的思想,只要把dfs表示放置情况的数字压缩成一个整数,就能实现记忆化搜索了. 一些有关集合的操作: {i}在集合S内:S&(1<<i)==1: 将{i}加入集合S:S= ...

  9. 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    首先我们能够一眼看到4 <= N <= 16,那么就是它了,我们要压缩的状态就是它了 那么之后能我们用这个状态表示什么呢,我们要表示的显然是每只奶牛是否在队伍中 比如说10吧,转成二进制后 ...

随机推荐

  1. js 跨浏览器获取事件信息模块

    var EventUtil = { addHandler: function(element, type, handler) { if (element.addEventListener) { ele ...

  2. HDU 5184

    卡特兰数的一个变形而已. 一个经典的习题变过来的: n+m个人排队买票,并且满足,票价为50元,其中n个人各手持一张50元钞票,m个人各手持一张100元钞票,除此之外大家身上没有任何其他的钱币,并且初 ...

  3. macOS10.9+xcode6编译ffmpeg2.4.2 for ios

    近期须要用到ffmpeg开发视频相关.在网上找了些编译资源,自己摸索着,总算编译ok了. 因此,记录下苦逼的编译过程,已祭奠我为之逝去的青春. 1.准备工作 首先.到ffmpeg官网下载最新到代码. ...

  4. oc21--super

    // // Phone.h #import <Foundation/Foundation.h> typedef enum { kFlahlightStatusOpen, kFlahligh ...

  5. linux中字符串转换函数 simple_strtoul

    Linux内核中提供的一些字符串转换函数: lib/vsprintf.c 1. unsigned long long simple_strtoull(const char *cp, char **en ...

  6. c#约瑟环实现

    约瑟环问题就是有n个人坐成一个圈.从某个人开始报数,数到m的人出列,接着从列出的下一个人开始重新报数,数到m的人再次出列,如此循环,直到所有的人都出列,最后按出列的顺序输出.

  7. 数组、链表、栈、队列和STL

    数组 数组是一种最基本的数据结构,它是内存上的一块连续存储空间.正因如此数组的随机访问很方便.但数组也有其固有的限制,大小分配后不能改变. STL中的数组 STL中的Array是静态数组模板,就是我们 ...

  8. node.js date-utils

    前端引用 <script type="text/javascript" src="date-utils.min.js"></script> ...

  9. 创建一个netcore2.0和angular的项目并运行起来

    netcore2.0发布了,喜大普奔. 我们先下载SDK,请看张善友老师的这篇博客 http://www.cnblogs.com/shanyou/p/7363037.html 下载完之后 我用的vs2 ...

  10. 全局变量变为局部变量 & MVC思想

    1 函数中的全局变量如何变成局部变量? 全局变量之间会相互骚扰.所以在代码中不要用全局变量.ES6之前只有函数里面有全局变量. 全局变成局部变量怎么变? 把代-放在一个函数如中,再.call()执行一 ...