题目描述

最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。

通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=BPi),但是每天不能无限制地交易,于是股票交易所规定第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BSi股。

另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔W天,也就是说如果在第i天发生了交易,那么从第i+1天到第i+W天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过MaxP。

在第1天之前,lxhgww手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然,T天以后,lxhgww想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?

输入输出格式

输入格式:

输入数据第一行包括3个整数,分别是T,MaxP,W。

接下来T行,第i行代表第i-1天的股票走势,每行4个整数,分别表示APi,BPi,ASi,BSi。

输出格式:

输出数据为一行,包括1个数字,表示lxhgww能赚到的最多的钱数。

输入输出样例

输入样例#1:

5 2 0

2 1 1 1

2 1 1 1

3 2 1 1

4 3 1 1

5 4 1 1

输出样例#1:

3

说明

对于30%的数据,0<=WT<=50,1<=MaxP<=50

对于50%的数据,0<=W<T<=2000,1<=MaxP<=50

对于100%的数据,0<=W<T<=2000,1<=MaxP<=2000

对于所有的数据,1<=BPi<=APi<=1000,1<=ASi,BSi<=MaxP

dp[i][j] 表示第i天手中有j张邮票的最优解

分情况讨论即可(空手买 不买 买入 卖出)

其中 买入、卖出 用单调队列优化

PS: 代码中我先写出原来的方程方便看着写

code:

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; int dp[2010][2010],q[2010]; int rd() {
int x=0,fla=1;
char c=' ';
while(c<'0' || c>'9') {if(c=='-') fla=-fla;c=getchar();}
while(c>='0' && c<='9') x=x*10+c-'0',c=getchar();
return x*fla;
} int main() {
int t=rd(),m=rd(),w=rd(); memset(dp,128,sizeof dp);//极小值 for(int i=1;i<=t;i++) {
int ap=rd(),bp=rd(),as=rd(),bs=rd();
//买价 ap 卖价 bp 买量 as 卖量 bs
for(int j=0;j<=as;j++) dp[i][j]=-ap*j;
for(int j=0;j<=m;j++) dp[i][j]=max(dp[i][j],dp[i-1][j]); if(i<=w) continue; // !!!! // 买入 dp[i][j]=max(dp[i][j],dp[i-w-1][k]+ap*k-ap*j); (0<=k<=j && j-k<=as)
// 单调: dp[i-w-1][k]+ap*k
int l=1,r=0;
for(int j=0;j<=m;j++) {
while(l<=r && j-q[l]>as) l++;
while(l<=r && dp[i-w-1][q[r]]+ap*q[r] <= dp[i-w-1][j]+ap*j) r--;
q[++r]=j;// !
if(l<=r)// !
dp[i][j]=max(dp[i][j],dp[i-w-1][q[l]]+ap*q[l]-ap*j);
} // 卖出:dp[i][j]=max(dp[i][j],dp[i-w-1][k]+bp*k-j*bp)) (j<=k<=m && k-j<=bs)
// 单调:dp[i-w-1][k]+bp*k;
l=1,r=0;
for(int j=m;j>=0;j--) {
while(l<=r && q[l]-j>bs) l++;
while(l<=r && dp[i-w-1][q[r]]+bp*q[r] <= dp[i-w-1][j]+bp*j) r--;
q[++r]=j;// !
if(l<=r)// !
dp[i][j]=max(dp[i][j],dp[i-w-1][q[l]]+bp*q[l]-bp*j);
}
}
int maxn=-0x3f3f3f3f;
for(int i=0;i<=m;i++) maxn=max(dp[t][i],maxn);
printf("%d",maxn);
return 0;
}

[SCOI2010] 股票交易 (单调队列优化dp)的更多相关文章

  1. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  4. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  5. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  6. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  7. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  8. BZOJ1855 股票交易 单调队列优化 DP

    描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...

  9. 股票交易——单调队列优化DP

    题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...

  10. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

随机推荐

  1. POJ 1106

    先判断是否在圆内,然后用叉积判断是否在180度内.枚举判断就可以了... 感觉是数据弱了.. #include <iostream> #include <cstdio> #in ...

  2. 杭电(hdu)ACM 1010 Tempter of the Bone

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  3. 设计模式 - 适配器模式(adapter pattern) 枚举器和迭代器 具体解释

    适配器模式(adapter pattern) 枚举器和迭代器 具体解释 本文地址: http://blog.csdn.net/caroline_wendy 參考适配器模式(adapter patter ...

  4. C#调用C++回调函数的问题

    C++的回调函数中有一个参数是,是返回一个字符串,原则如下: typedef   void   (*TDataEvent)(char   *AData   ,int   ALen); 其中char   ...

  5. ios开发之Swift新手入门

    1.关于swift和调试,swift在ios7.0才支持,ios8.3系统的真机必需要xcode6.3才干调试.安装xcode6.3需要os x 10.10以上 2.应用程序由Main.storybo ...

  6. SQL SERVER读书笔记:TempDB

    每次SQL SERVER启动的时候,会重新创建. 用于 0.临时表 1.排序 2.连接(merge join,hash join) 3.行版本控制 临时表与表变量的区别: 1)表变量是存储在内存中的, ...

  7. exchange&nbsp;2010-备份还原

    操作系统:Windows Server 2008R2 \ Exchange2010 测试 1.使用Administraotr用户进行查看己有邮件,如下图: 2.备份Exchange2010整个数据库, ...

  8. 多个submit

    <html><body> <form action="welcome.php" method="post">Name: &l ...

  9. gitlab quickly install

    一.安装gitlab依赖环境 yum -y install vim wget epel-release  yum install curl policycoreutils openssh-server ...

  10. 在YII2中使用memcached

    一.在本地安装Memcached服务器和安装memcached扩展 http://www.cnblogs.com/songziqing/p/5896742.html http://www.cnblog ...