ShuffleManager负责管理本地以及远程的block数据的shuffle操作。

ShffuleManager的创建是在SparkEnv中。

    // Let the user specify short names for shuffle managers
val shortShuffleMgrNames = Map(
"sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName,
"tungsten-sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName)
val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")
val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)
//通过反射创建ShuffleManager
val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)

2.1.6.1、在本人的spark版本中(2.1.1)只有SortShuffleManger, 在spark1.2之前还有HashShuffleManager, 已经被移除了。

在Spark的版本的发展,ShuffleManager在不断迭代,变得越来越先进。

在Spark 1.2以前,默认的shuffle计算引擎是HashShuffleManager。该ShuffleManager而HashShuffleManager有着一个非常严重的弊端,就是会产生大量的中间磁盘文件,进而由大量的磁盘IO操作影响了性能。因此在Spark 1.2以后的版本中,默认的ShuffleManager改成了SortShuffleManager。SortShuffleManager相较于HashShuffleManager来说,有了一定的改进。主要就在于,每个Task在进行shuffle操作时,虽然也会产生较多的临时磁盘文件,但是最后会将所有的临时文件合并(merge)成一个磁盘文件,因此每个Task就只有一个磁盘文件。在下一个stage的shuffle read task拉取自己的数据时,只要根据索引读取每个磁盘文件中的部分数据即可。

接下来看看SortShuffleManger功能

注册Shuffle

通过manager注册shuffle,  同时获取一个handle用于发送任务

  /**
* 注册Shuffle
* Register a shuffle with the manager and obtain a handle for it to pass to tasks.
*/
override def registerShuffle[K, V, C](
shuffleId: Int,
numMaps: Int,
dependency: ShuffleDependency[K, V, C]): ShuffleHandle = { //创建handle
if (SortShuffleWriter.shouldBypassMergeSort(SparkEnv.get.conf, dependency)) {
// If there are fewer than spark.shuffle.sort.bypassMergeThreshold partitions and we don't
// need map-side aggregation, then write numPartitions files directly and just concatenate
// them at the end. This avoids doing serialization and deserialization twice to merge
// together the spilled files, which would happen with the normal code path.
// The downside is having multiple files open at a time and thus more memory allocated to buffers. // by pass handle
new BypassMergeSortShuffleHandle[K, V](
shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
} else if (SortShuffleManager.canUseSerializedShuffle(dependency)) {
// Otherwise, try to buffer map outputs in a serialized form, since this is more efficient:
// 序列化shuffle handle
new SerializedShuffleHandle[K, V](
shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
} else {
// Otherwise, buffer map outputs in a deserialized form:
// 剩下就是 未序列化格式
new BaseShuffleHandle(shuffleId, numMaps, dependency)
}
}

有三种Handle :  确定使用哪种shuffle path

BypassMergeSortShuffleHandle

SerializedShuffleHandle

BaseShuffleHandle

移除shuffle

  通过ShuffleBlockResolver持有的blockManager.diskBlockManager定位到数据文件和索引文件, 然后删除

  /** Remove a shuffle's metadata from the ShuffleManager. */
override def unregisterShuffle(shuffleId: Int): Boolean = {
Option(numMapsForShuffle.remove(shuffleId)).foreach { numMaps =>
(0 until numMaps).foreach { mapId =>
shuffleBlockResolver.removeDataByMap(shuffleId, mapId)
}
}
true
}

getWriter

  根据给定的partition,获取一个ShuffleWriter, 在executor上被map task调用

  override def getWriter[K, V](
handle: ShuffleHandle,
mapId: Int,
context: TaskContext): ShuffleWriter[K, V] = { //向numMapsForShuffle中添加新的shuffleId,
numMapsForShuffle.putIfAbsent(
handle.shuffleId, handle.asInstanceOf[BaseShuffleHandle[_, _, _]].numMaps) //SparkEnv
val env = SparkEnv.get //根据ShuffleHandle匹配对应的ShuffleWriter
handle match {
case unsafeShuffleHandle: SerializedShuffleHandle[K @unchecked, V @unchecked] =>
new UnsafeShuffleWriter(
env.blockManager,
shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],
context.taskMemoryManager(),
unsafeShuffleHandle,
mapId,
context,
env.conf)
case bypassMergeSortHandle: BypassMergeSortShuffleHandle[K @unchecked, V @unchecked] =>
new BypassMergeSortShuffleWriter(
env.blockManager,
shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],
bypassMergeSortHandle,
mapId,
context,
env.conf)
case other: BaseShuffleHandle[K @unchecked, V @unchecked, _] =>
new SortShuffleWriter(shuffleBlockResolver, other, mapId, context)
}
}

getReader

  创建一个BlockStoreShuffleManager 读取一个范围partition的数据, 在executor上被reduce task调用

  /**
* Get a reader for a range of reduce partitions (startPartition to endPartition-1, inclusive).
* Called on executors by reduce tasks.
*/
override def getReader[K, C](
handle: ShuffleHandle,
startPartition: Int,
endPartition: Int,
context: TaskContext): ShuffleReader[K, C] = {
new BlockStoreShuffleReader(
handle.asInstanceOf[BaseShuffleHandle[K, _, C]], startPartition, endPartition, context)
}

2.1.6、SparkEnv中创建ShuffleManager的更多相关文章

  1. 2.1.5、SparkEnv中创建MapOutputTracker

    SparkEnv中创建MapOutputTracker def registerOrLookupEndpoint( name: String, endpointCreator: => RpcEn ...

  2. 2.1.4、SparkEnv中创建BroadcastManager

    Broadcast是分布式的数据共享,由BroadcastManager负责管理其创建或销毁.Broadcast一般用于处理共享的配置文件.通用Dataset.常用数据结构 通过SparkContex ...

  3. In-Memory:在内存中创建临时表和表变量

    在Disk-Base数据库中,由于临时表和表变量的数据存储在tempdb中,如果系统频繁地创建和更新临时表和表变量,大量的IO操作集中在tempdb中,tempdb很可能成为系统性能的瓶颈.在SQL ...

  4. 【初学者指南】在ASP.NET MVC 5中创建GridView

    介绍 在这篇文章中,我们将会学习如何在 ASP.NET MVC 中创建一个 gridview,就像 ASP.NET Web 表单中的 gridview 一样.服务器端和客户端有许多可用的第三方库,这些 ...

  5. SQL Server 在多个数据库中创建同一个存储过程(Create Same Stored Procedure in All Databases)

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 遇到的问题(Problems) 实现代码(SQL Codes) 方法一:拼接SQL: 方法二: ...

  6. SAP CRM 在Web UI中创建搜索帮助

    多数情况下,在Web UI为一个特定的字段提供搜索帮助需要在事务SE11中创建搜索帮助. (注:也可以通过在SE24中创建一个类并实现实现IF_BSP_WD_CUSTOM_F4_CALLBACK接口来 ...

  7. 详解Linux交互式shell脚本中创建对话框实例教程_linux服务器

    本教程我们通过实现来讲讲Linux交互式shell脚本中创建各种各样对话框,对话框在Linux中可以友好的提示操作者,感兴趣的朋友可以参考学习一下. 当你在终端环境下安装新的软件时,你可以经常看到信息 ...

  8. 如何在ARM中创建Express Route

    很早之前就想试试Azure的express route,但是一直没有找到合适的机会,正好有个客户需要上express route,所以最近先自己研究研究,防止在做poc的时候耗费更多时间,本次场景我们 ...

  9. 在powerdesigner中创建物理数据模型

    物理数据模型(PDM)是以常用的DBMS(数据库管理系统)理论为基础,将CDM/LDM中所建立的现实世界模型生成相应的DBMS的SQL语言脚本.PDM叙述数据库的物理实现,是对真实数据库的描述 PDM ...

随机推荐

  1. win7下远程登录ubuntu mysql

    网络上找了很久的一个办法,不然老是远程访问不了linux mysql. 原先一直用root登录,进不了,新建一个root1倒是可以了. 安装好mysql后,按以下步骤: 1.将vim /etc/mys ...

  2. E20170919-hm

    infinity   n. <数>无穷大; 无限的时间或空间;

  3. Python机器学习算法 — KNN分类

    KNN简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.KNN分类算法属于监督学习. 最简单最初级的分类器是将全部的训练 ...

  4. codevs1293送给圣诞夜的极光(bfs)

    1293 送给圣诞夜的极光  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold     题目描述 Description 圣诞老人回到了北极圣诞区,已经快到12点了 ...

  5. Gym - 100162G 2012-2013 Petrozavodsk Winter Training Camp G. Lyndon Words 暴力枚举

    题面 题意:如果一个字符串的最小表示法是他自己,他就是一个Lyndon Word. 例如  aabcb 他的循环串有 abcba  bcbaa cbaab baabc 其中字典序最小的是他自己 现在给 ...

  6. [Swift通天遁地]五、高级扩展-(13)图片资源本地化设置:根据不同的语言环境显示不同语言版本图片

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  7. javascript 获取时间

    Js获取当前日期时间及其它操作 var myDate = new Date();myDate.getYear();        //获取当前年份(2位)myDate.getFullYear();   ...

  8. [Luogu 1312] noip11 Mayan游戏

    [Luogu 1312] noip11 Mayan游戏 Problem: Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  9. ACM_滚动AC

    滚动AC Time Limit: 2000/1000ms (Java/Others) Problem Description: 小光最近拉了几个同学入ACM的坑,为鼓励A题,就增加奖励制度:每AC三道 ...

  10. day03_12/13/2016_bean的管理之作用域与初始化时间

    在Spring中,Bean有几种作用域: 1.singleton作用域 当一个bean的作用域设置为singleton,那么Spring IOC容器中只会存在一个共享的bean实例,并且所有对bean ...