Sqoop 将mysql 数据导入到hdfs(import)

1.创建mysql表

CREATE TABLE `sqoop_test` (
`id` int() DEFAULT NULL,
`name` varchar() DEFAULT NULL,
`age` int() DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1

插入数据

2.hive 建表

hive> create external table sqoop_test(id int,name string,age int)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> STORED AS TEXTFILE
> location '/user/hive/external/sqoop_test';
OK
Time taken: 0.145 seconds

3.使用sqoop将mysql数据导入到hdfs

sqoop import --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --columns id,name,age --fields-terminated-by , --delete-target-dir --target-dir /user/hive/external/sqoop_test/ -m 1

--delete-target-dir:如果目标目录存在则删除。

EFdeMacBook-Pro:bin FengZhen$ sqoop import --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --columns id,name,age --fields-terminated-by , --delete-target-dir --target-dir /user/hive/external/sqoop_test/ -m 1
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4..bin__hadoop-2.0.-alpha/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4..bin__hadoop-2.0.-alpha/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hadoop-2.8./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hbase-1.3./lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
// :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
// :: WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
// :: INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
// :: INFO tool.CodeGenTool: Beginning code generation
// :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT
// :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT
// :: INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /Users/FengZhen/Desktop/Hadoop/hadoop-2.8.
// :: INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-FengZhen/compile/1a0c4154ffefb21d4af720813dd0b3fc/sqoop_test.jar
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO tool.ImportTool: Destination directory /user/hive/external/sqoop_test deleted.
// :: WARN manager.MySQLManager: It looks like you are importing from mysql.
// :: WARN manager.MySQLManager: This transfer can be faster! Use the --direct
// :: WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
// :: INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
// :: INFO mapreduce.ImportJobBase: Beginning import of sqoop_test
// :: INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
// :: INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
// :: INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO db.DBInputFormat: Using read commited transaction isolation
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505268150495_0008
// :: INFO impl.YarnClientImpl: Submitted application application_1505268150495_0008
// :: INFO mapreduce.Job: The url to track the job: http://192.168.1.64:8088/proxy/application_1505268150495_0008/
// :: INFO mapreduce.Job: Running job: job_1505268150495_0008
// :: INFO mapreduce.Job: Job job_1505268150495_0008 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1505268150495_0008 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Other local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all map tasks=
Map-Reduce Framework
Map input records=
Map output records=
Input split bytes=
Spilled Records=
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
// :: INFO mapreduce.ImportJobBase: Transferred bytes in 18.6372 seconds (1.3951 bytes/sec)
// :: INFO mapreduce.ImportJobBase: Retrieved records.

可在hdfs看到传入的数据

EFdeMacBook-Pro:jarfile FengZhen$ hadoop fs -ls /user/hive/external/sqoop_test
Found items
-rw-r--r-- FengZhen supergroup -- : /user/hive/external/sqoop_test/_SUCCESS
-rw-r--r-- FengZhen supergroup -- : /user/hive/external/sqoop_test/part-m-

可在hive中查看数据。

hive> select * from sqoop_test;
OK
fz
dx
test
Time taken: 1.756 seconds, Fetched: row(s)

使用sqoop将hive数据导出到mysql(export)

使用 sqoop 将mysql数据导入到hdfs(import)的更多相关文章

  1. Sqoop将mysql数据导入hbase的血与泪

    Sqoop将mysql数据导入hbase的血与泪(整整搞了大半天)  版权声明:本文为yunshuxueyuan原创文章.如需转载请标明出处: https://my.oschina.net/yunsh ...

  2. 使用sqoop把mysql数据导入hive

    使用sqoop把mysql数据导入hive export HADOOP_COMMON_HOME=/hadoop export HADOOP_MAPRED_HOME=/hadoop   cp /hive ...

  3. 使用 sqoop 将mysql数据导入到hive表(import)

    Sqoop将mysql数据导入到hive表中 先在mysql创建表 CREATE TABLE `sqoop_test` ( `id` ) DEFAULT NULL, `name` varchar() ...

  4. 使用sqoop将mysql数据导入到hive中

    首先准备工具环境:hadoop2.7+mysql5.7+sqoop1.4+hive3.1 准备一张数据库表: 接下来就可以操作了... 一.将MySQL数据导入到hdfs 首先我测试将zhaopin表 ...

  5. Sqoop1.99.7将MySQL数据导入到HDFS中

    准备 本示例将实现从MySQL数据库中将数据导入到HDFS中 参考文档: http://sqoop.apache.org/docs/1.99.7/user/Sqoop5MinutesDemo.html ...

  6. 大数据之路week07--day07 (Sqoop 从mysql增量导入到HDFS)

    我们之前导入的都是全量导入,一次性全部导入,但是实际开发并不是这样,例如web端进行用户注册,mysql就增加了一条数据,但是HDFS中的数据并没有进行更新,但是又再全部导入一次又完全没有必要. 所以 ...

  7. python脚本 用sqoop把mysql数据导入hive

    转:https://blog.csdn.net/wulantian/article/details/53064123 用python把mysql数据库的数据导入到hive中,该过程主要是通过pytho ...

  8. 使用sqoop将mysql数据导入到hadoop

    hadoop的安装配置这里就不讲了. Sqoop的安装也很简单. 完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下): ...

  9. sqoop将mysql数据导入hbase、hive的常见异常处理

    原创不易,如需转载,请注明出处https://www.cnblogs.com/baixianlong/p/10700700.html,否则将追究法律责任!!! 一.需求: 1.将以下这张表(test_ ...

随机推荐

  1. Android使用ImageView显示网络图片

    本案例使用ImageView 简单的实现了网络图片的调用.当中注意事项.由于用到了网络,这里採用了HttpClient方法訪问网络联接,关于怎样使用,可參照文章 Android中使用HttpClien ...

  2. pycharm下: conda installation is not found ----一个公开的bug的解决方案

    pycharm  conda installation is not  found ----一个公开的bug的解决方案 pycharm+anaconda 是当前的主流的搭建方案,但是常出现上述问题. ...

  3. android常用权限

    访问登记属性 android.permission.ACCESS_CHECKIN_PROPERTIES ,读取或写入登记check-in数据库属性表的权限 获取错略位置 android.permiss ...

  4. python selenium2示例 - email发送

    前言 在进行日常的自动化测试实践中,我们总是需要将测试过程中的记录.结果等等等相关信息通过自动的手段发送给相关人员.python的smtplib.email模块为我们提供了很好的email发送等功能的 ...

  5. mysql 考勤表异常 【待修改】

    有考勤刷卡记录表,表名为attendance ,有如下字段: 姓名 卡号 刷卡时间 刷卡类型 name id time type    张三 59775623 2010-04-01 07:23:37  ...

  6. 嵌入式开发之davinci--- 8148/8168/8127 中的High-DefinitionVideo Processing Subsystem (HDVPSS)

    High-DefinitionVideo Processing Subsystem (HDVPSS) 这一章介绍了高清视频处理子系统(HDVPSS). 2.1导论 2.1.1 简介 HDVPSS 使用 ...

  7. 8148 8168 中移植live55 出现except rtsp 中途莫名的断流

    在解码中,接了浙江宇视的ipc相机,解码一般就挂了,vlc 也是中途断流.费解? vlc异常信息如下: packetizer_h264 warning: waiting for SPS/PPS pac ...

  8. 使用Highcharts实现柱状图展示

    第一步 新建页面line.html,引入HighCharts核心js文件 <script type="text/javascript" src="../../js/ ...

  9. Android使用JUnit进行单元测试

    前言:为什么要进行单元测试?单元测试能快速是开发者,找到代码中的问题所在,因为是单元测试,所以代码只执行响应的测试单元,执行快解决问题的效率高,同时提高代码的质量. Android中的单元测试可简单分 ...

  10. 批处理--执行sql(mysql数据库)

    @echo off rem test.sql文件 for %%i in (test.sql) do ( echo excute %%i mysql -u用户名 -p密码 -D数据库名 < %%i ...