使用 sqoop 将mysql数据导入到hdfs(import)
Sqoop 将mysql 数据导入到hdfs(import)
1.创建mysql表
CREATE TABLE `sqoop_test` (
`id` int() DEFAULT NULL,
`name` varchar() DEFAULT NULL,
`age` int() DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
插入数据
2.hive 建表
hive> create external table sqoop_test(id int,name string,age int)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> STORED AS TEXTFILE
> location '/user/hive/external/sqoop_test';
OK
Time taken: 0.145 seconds
3.使用sqoop将mysql数据导入到hdfs
sqoop import --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --columns id,name,age --fields-terminated-by , --delete-target-dir --target-dir /user/hive/external/sqoop_test/ -m 1
--delete-target-dir:如果目标目录存在则删除。
EFdeMacBook-Pro:bin FengZhen$ sqoop import --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --columns id,name,age --fields-terminated-by , --delete-target-dir --target-dir /user/hive/external/sqoop_test/ -m 1
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4..bin__hadoop-2.0.-alpha/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4..bin__hadoop-2.0.-alpha/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hadoop-2.8./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hbase-1.3./lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
// :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
// :: WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
// :: INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
// :: INFO tool.CodeGenTool: Beginning code generation
// :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT
// :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT
// :: INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /Users/FengZhen/Desktop/Hadoop/hadoop-2.8.
// :: INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-FengZhen/compile/1a0c4154ffefb21d4af720813dd0b3fc/sqoop_test.jar
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO tool.ImportTool: Destination directory /user/hive/external/sqoop_test deleted.
// :: WARN manager.MySQLManager: It looks like you are importing from mysql.
// :: WARN manager.MySQLManager: This transfer can be faster! Use the --direct
// :: WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
// :: INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
// :: INFO mapreduce.ImportJobBase: Beginning import of sqoop_test
// :: INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
// :: INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
// :: INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO db.DBInputFormat: Using read commited transaction isolation
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505268150495_0008
// :: INFO impl.YarnClientImpl: Submitted application application_1505268150495_0008
// :: INFO mapreduce.Job: The url to track the job: http://192.168.1.64:8088/proxy/application_1505268150495_0008/
// :: INFO mapreduce.Job: Running job: job_1505268150495_0008
// :: INFO mapreduce.Job: Job job_1505268150495_0008 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1505268150495_0008 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Other local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all map tasks=
Map-Reduce Framework
Map input records=
Map output records=
Input split bytes=
Spilled Records=
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
// :: INFO mapreduce.ImportJobBase: Transferred bytes in 18.6372 seconds (1.3951 bytes/sec)
// :: INFO mapreduce.ImportJobBase: Retrieved records.
可在hdfs看到传入的数据
EFdeMacBook-Pro:jarfile FengZhen$ hadoop fs -ls /user/hive/external/sqoop_test
Found items
-rw-r--r-- FengZhen supergroup -- : /user/hive/external/sqoop_test/_SUCCESS
-rw-r--r-- FengZhen supergroup -- : /user/hive/external/sqoop_test/part-m-
可在hive中查看数据。
hive> select * from sqoop_test;
OK
fz
dx
test
Time taken: 1.756 seconds, Fetched: row(s)
使用sqoop将hive数据导出到mysql(export)
使用 sqoop 将mysql数据导入到hdfs(import)的更多相关文章
- Sqoop将mysql数据导入hbase的血与泪
Sqoop将mysql数据导入hbase的血与泪(整整搞了大半天) 版权声明:本文为yunshuxueyuan原创文章.如需转载请标明出处: https://my.oschina.net/yunsh ...
- 使用sqoop把mysql数据导入hive
使用sqoop把mysql数据导入hive export HADOOP_COMMON_HOME=/hadoop export HADOOP_MAPRED_HOME=/hadoop cp /hive ...
- 使用 sqoop 将mysql数据导入到hive表(import)
Sqoop将mysql数据导入到hive表中 先在mysql创建表 CREATE TABLE `sqoop_test` ( `id` ) DEFAULT NULL, `name` varchar() ...
- 使用sqoop将mysql数据导入到hive中
首先准备工具环境:hadoop2.7+mysql5.7+sqoop1.4+hive3.1 准备一张数据库表: 接下来就可以操作了... 一.将MySQL数据导入到hdfs 首先我测试将zhaopin表 ...
- Sqoop1.99.7将MySQL数据导入到HDFS中
准备 本示例将实现从MySQL数据库中将数据导入到HDFS中 参考文档: http://sqoop.apache.org/docs/1.99.7/user/Sqoop5MinutesDemo.html ...
- 大数据之路week07--day07 (Sqoop 从mysql增量导入到HDFS)
我们之前导入的都是全量导入,一次性全部导入,但是实际开发并不是这样,例如web端进行用户注册,mysql就增加了一条数据,但是HDFS中的数据并没有进行更新,但是又再全部导入一次又完全没有必要. 所以 ...
- python脚本 用sqoop把mysql数据导入hive
转:https://blog.csdn.net/wulantian/article/details/53064123 用python把mysql数据库的数据导入到hive中,该过程主要是通过pytho ...
- 使用sqoop将mysql数据导入到hadoop
hadoop的安装配置这里就不讲了. Sqoop的安装也很简单. 完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下): ...
- sqoop将mysql数据导入hbase、hive的常见异常处理
原创不易,如需转载,请注明出处https://www.cnblogs.com/baixianlong/p/10700700.html,否则将追究法律责任!!! 一.需求: 1.将以下这张表(test_ ...
随机推荐
- Django--基础补充
render 函数 在Django的使用中,render函数大多与浏览器发来的GET请求一并出现,它的使用方法非常简单 例如:render(request,"xxx.html",{ ...
- eclipse导入svn工程,在文件夹里面不展示svn工程图标
原因:没有安装subclipse插件 解决方法:在marketplace中搜索插件名字:subclipse,点击安装,或者在instal new software中输入插件名字,安装完成之后,在文件夹 ...
- JLink defective
下载了最新的JLink V622g,打开JLink命令行后,提示以下信息 The connected J-Link is defective,Proper operation cannot be gu ...
- MapReduce源码分析之InputFormat
InputFormat描述了一个Map-Reduce作业中的输入规范.Map-Reduce框架依靠作业的InputFormat实现以下内容: 1.校验作业的输入规范: 2.分割输入文件(可能为多个), ...
- go的url解析
对于解析url,是一个常见的场景,下面就来说这个,直接见代码: package main import ( "fmt" "net/url" "stri ...
- HDU 5273 区间DP
输入一组数,m次询问 问每一个询问区间的逆序数有多少 区间DP简单题 #include "stdio.h" #include "string.h" int dp ...
- yum lock 解决方法
方法一: # ps aux | grep yum # kill -9 pid 方法二:可以通过执行rm -rf /var/run/yum.pid 来强行解除锁定,然后你的yum就可以运行了 解释: [ ...
- requestFullscreen实现全屏展示
requestFullscreen实现全屏展示. var fullContainer = document.getElementById('fullScreenContainer'); //先把元素展 ...
- Linux64位程序移植
1 概述 Linux下的程序大多充当服务器的角色,在这种情况下,随着负载量和功能的增加,服务器所使用内存必然也随之增加,然而32位系统固有的4GB虚拟地址空间限制,在如今已是非常突出的问题了:另一个需 ...
- Java数据结构-线性表之顺序表ArrayList
线性表的顺序存储结构.也称为顺序表.指用一段连续的存储单元依次存储线性表中的数据元素. 依据顺序表的特性,我们用数组来实现顺序表,以下是我通过数组实现的Java版本号的顺序表. package com ...