题意:给定一个\(5\times 6\)的棋盘的\(01\)状态,每次操作可以使它自己和周围四个格子状态取反,求如何操作,输出一个\(01\)矩阵

题解:这题可以通过枚举第一行的状态然后剩下递推来做,但是这里还是写一种好理解的高斯消元解异或方程组的方法。

对于每个格子列一个方程,未知数就是要求的答案矩阵,系数的话把它周围的设为1,其他设为0。然后右边的常数项为它本来的状态。然后就高斯消元嘛。

我用了bitset优化,实际上可能unsigned int或者long long也可以。

#include <algorithm>
#include <bitset>
#include <cstdio>
using namespace std; const int n = 5;
const int m = 6;
const int N = 34;
const int dx[] = {0, 1, 0, -1, 0};
const int dy[] = {0, 0, 1, 0, -1}; int f[N];
bitset<N> a[N]; int pos(int x, int y) {
return (x - 1) * m + y;
} void gauss(int n) {
for(int i = 1, j; i <= n; i ++) {
for(int k = i; k <= n; k ++) if(a[k][i]) j = k, k = n;
if(i != j) swap(a[i], a[j]);
for(j = i + 1; j <= n; j ++) if(a[j][i]) a[j] ^= a[i];
}
for(int i = n - 1; i >= 1; i --)
for(int j = i + 1; j <= n; j ++)
if(a[j][n + 1] && a[i][j]) a[i][n + 1] = !a[i][n + 1];
} int main() {
int test; scanf("%d", &test);
for(int t = 1; t <= test; t ++) {
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++)
scanf("%d", &f[pos(i, j)]);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++) {
int p = pos(i, j); a[p].reset();
a[p][n * m + 1] = f[p];
for(int k = 0; k < 5; k ++) {
int x = i + dx[k], y = j + dy[k];
if(x >= 1 && x <= n && y >= 1 && y <= m) {
a[p][pos(x, y)] = 1;
}
}
}
gauss(n * m);
printf("PUZZLE #%d\n", t);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++)
printf("%d%c", (int) a[pos(i, j)][n * m + 1], " \n"[j == m]);
}
return 0;
}

「ZOJ 1354」Extended Lights Out「高斯消元」的更多相关文章

  1. uva 1560 - Extended Lights Out(枚举 | 高斯消元)

    题目链接:uva 1560 - Extended Lights Out 题目大意:给定一个5∗6的矩阵,每一个位置上有一个灯和开关,初始矩阵表示灯的亮暗情况,假设按了这个位置的开关,将会导致周围包含自 ...

  2. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6 ...

  3. 【POJ】1222 EXTENDED LIGHTS OUT(高斯消元)

    http://poj.org/problem?id=1222 竟然我理解了两天..... 首先先来了解异或方程组(或者说mod2方程组,modk的话貌似可以这样拓展出来) 对于一些我们需要求出的变量a ...

  4. [POJ1222]EXTENDED LIGHTS OUT(高斯消元,异或方程组)

    题目链接:http://poj.org/problem?id=1222 题意:开关是四连通的,每按一个就会翻转自己以及附近的四个格(假如有).问需要翻转几个,使他们都变成关. 把每一个灯看作一个未知量 ...

  5. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

    [题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...

  6. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

  7. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

    http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...

  8. POJ1222EXTENDED LIGHTS OUT(高斯消元)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11815   Accepted: 7 ...

  9. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

随机推荐

  1. TCP之半关闭与CLOSE_WAIT

    终止一个连接要经过4次握手.这由TCP的半关闭(half-close)造成的.既然一个TCP连接是全双工(即数据在两个方向上能同时传递,可理解为两个方向相反的独立通道),因此每个方向必须单独地进行关闭 ...

  2. 解决sql脚本文件太大无法打开的问题

    as we known,sql数据库高版本向低版本还原是不太可能但是又经常会碰到的事,今天实测了一种方法 步骤:任务—>生成脚本—> 下一步->高级,选择数据库版本和编写脚本数据类型 ...

  3. cassandra安装配置

    准备运行环境1.1 cassandra可以安装在windows和linux下,本例子安装在centos6.7的环境下.1.2 关闭防火墙.或者开放9042(默认的CQL本地服务端口).9160(默认的 ...

  4. Android 4学习(6):概述 - 深入了解Android Activity

    参考:<Professional Android 4 Application Development> 深入了解Android Activity 每一个Android Activity都对 ...

  5. 问题:Custom tool error: Failed to generate code for the service reference 'AppVot;结果:添加Service Reference, 无法为服务生成代码错误的解决办法

    添加Service Reference, 无法为服务生成代码错误的解决办法 我的解决方案是Silverlight+WCF的应用,Done Cretiria定义了需要在做完Service端的代码后首先运 ...

  6. 信号量sem 的用法

    #include <semaphore.h> sem_t sem; sem_init(&sem, 0, 0); sem_post(&sem); sem_wait(& ...

  7. Linux系统的安装(centos的下载地址:http://mirror.symnds.com/distributions/CentOS-vault/6.3/isos/i386/,选择:CentOS-6.3-i386-bin-DVD1.iso 这个下载并进行安装)

    1.首先打开虚拟机: 在上面的那个按钮旁有一个下拉的符号,点开后会看到一个进入固件的按钮,直接点击进去. 便会进入这个界面: 在这个界面其实我们不需要该任何的东西,但是我们需要进入boot界面看一眼, ...

  8. JAVA基础知识总结9(特殊类)

    1.Object: 所有类的直接或者间接父类,Java认为所有的对象都具备一些基本的共性内容,这些内容可以不断的向上抽取,最终就抽取到了一个最顶层的类中的,该类中定义的就是所有对象都具备的功能. 具体 ...

  9. 4-4 zk特性 – 理解watcher机制

    watcher是zk里面非常重要的特性.watcher一定要去好好地看一下,一定要去好好地理解一下它是如何去用的,包括触发的事件类型等等.监督者也可以理解为触发器,也就是说当我们的节点发生了一些变化的 ...

  10. mt_rand()函数、str_shuffle() 函数、join() 函数

    mt_rand() 使用 Mersenne Twister 算法返回随机整数. 语法 mt_rand(min,max) 定义和用法 str_shuffle() 函数随机地打乱字符串中的所有字符. 语法 ...