题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=5159

题目大意是就是n个人进行两两的比赛,胜一局得A分,平局B分,败局C分。

然后取前m名入围,求入围的人最小的可能分数以及被淘汰的人的最大的可能分数。

这题首先可以想到的是胜A负C和胜C负A的情况是一模一样的。

所以可以先考虑让A大C小。

然后开始分情况讨论:

(1)B最小

1·这种情况下全部平局的话,能让入围的人分数最小。

2·然后需要考虑被淘汰的人的最大的可能分数:

必然将这些人分成m+1+n-m-1

由于要让这个’1’的分数尽可能大,自然考虑让n-m-1个人全部负场淘汰。

这样前面m+1个人都先得到a*(n-m-1)分。

然后需要让这个’1’尽可能大的话,首先他可以和m其中一半的人打胜场,和另一半的人打负场,这比打平局合算。然后这一半的人再胜另一半的人,这种情况所有人分数平衡。

此时又得到m/2*(a+c)分。

最后如果m是奇数,那么最后一场打负场。

这样做,因为’1’最多只能胜m个人里面一半的人,否则他肯定不会是最后一名。

所以中间打一半胜一半负,而且最后m%2那一局不能胜。

此外c>b,所以考虑m%2那场负。

(2)B最大

1·这种情况下全部平局的话,能让被淘汰的人的分数最大。

2·然后需要考虑围的人最小的可能分数;

必然将这些人分成m-1+1+n-m

由于要让这个’1’的分数尽可能小,自然考虑让m-1个人全部胜场入围。

这样前面n-m+1个人都先得到c*(m-1)分。

然后需要让这个’1’尽可能小的话,首先他可以和n-m其中一半的人打胜场,和另一半的人打负场,这比打平局分数少。

此时又得到(n-m)/2*(a+c)分。

最后如果n-m是奇数,那么最后一场打胜场。

这样做,因为’1’最多只能负m个人里面一半的人,否则他肯定不会是第一名。

所以中间打一半胜一半负,而且最后(n-m)%2那一局不能负。

此外a<b,所以考虑(n-m)%2那场胜。

(3)剩余情况中2*b < a+c的:

为什么考虑这两者的关系,因为上面的讨论已经发现了微妙的联系。

1·考虑围的人最小的可能分数;

必然m-1+1+n-m

然后让前面的m-1个人都胜场入围,那么必然’1’首先需要败m-1场。

然后他需要胜过至少(n-m)里面的一半人,这种情况下由于一开始的2*b < a+c,他选择平局分数更小。

自然最后如果多一场选择平局,而不选择胜局。

2·考虑被淘汰的人的最大的可能分数:

自然需要先胜(n-m-1)个人,因为他们全部负场。

然后他跟前面的人打一半胜一半负,因为2*b < a+c。

最后多的一场m%2打平局,否则他将胜过一半人。

(4)最后一种情况和(3)类似了。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <string>
#include <queue>
#define LL long long
#define MOD 1000000007 using namespace std; int n, m, a, b, c;
LL mi, ma; void input()
{
scanf("%d%d", &n, &m);
scanf("%d%d%d", &a, &b, &c);
if (a < c) swap(a, c);
} void work()
{
if (b < a && b < c)
{
mi = (LL)b*(n-);
ma = (LL)a*(n-m-);
ma += (LL)m/*(a+c);
ma += (LL)c*(m%);//
return;
}
if (b > a && b > c)
{
ma = (LL)b*(n-);
mi = (LL)c*(m-);
mi += ((LL)n-m)/*(a+c);
mi += (LL)a*((n-m)%);//
return;
}
if (*b < a+c)
{
mi = (LL)c*(m-);
mi += ((LL)n-m)*b; ma = (LL)a*(n-m-);
ma += (LL)m/*(a+c);
ma += (LL)b*(m%);//
return;
}
else
{
mi = (LL)c*(m-);
mi += ((LL)n-m)/*(a+c);
mi += (LL)b*((n-m)%);// ma = (LL)a*(n-m-);
ma += (LL)m*b;
return;
}
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
input();
work();
printf("Case #%d: ", times);
printf("%lld %lld\n", ma, mi);
}
return ;
}

ACM学习历程—UVALive 7147 World Cup(分类讨论 && 贪心)的更多相关文章

  1. UVALive 7147 World Cup(数学+贪心)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  2. ACM学习历程—FZU2195 检查站点(树形DP || 贪心)

    Description 在山上一共有N个站点需要检查,检查员从山顶出发去各个站点进行检查,各个站点间有且仅有一条通路,检查员下山前往站点时比较轻松,而上山时却需要额外的时间,问最后检查员检查完所有站点 ...

  3. ACM学习历程—FZU 2144 Shooting Game(计算几何 && 贪心 && 排序)

    Description Fat brother and Maze are playing a kind of special (hentai) game in the playground. (May ...

  4. ACM学习历程—HDU 4726 Kia's Calculation( 贪心&&计数排序)

    DescriptionDoctor Ghee is teaching Kia how to calculate the sum of two integers. But Kia is so carel ...

  5. UVaLive 6862 Triples (数学+分类讨论)

    题意:给定一个n和m,问你x^j + y^j = z^j 的数量有多少个,其中0 <= x <= y <= z <= m, j = 2, 3, 4, ... n. 析:是一个数 ...

  6. AtCoder Beginner Contest 173 E Multiplication 4 分类讨论 贪心

    LINK:Multiplication 4 害怕别人不知道我有多菜 那就上张图: 赛时 太慌了 (急着AK 题目不难却暴露我的本性 根本不思考无脑写 wa了还一直停不下来的debug 至少被我发现了1 ...

  7. ACM学习历程—CodeForces 590A Median Smoothing(分类讨论 && 数学)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给一个串,头和尾每次变换保持不变. 中间的a[i]变成a[i-1],a[i],a[i+ ...

  8. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  9. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

随机推荐

  1. 字符串HASH模板

    //注意MAXN是最大不同的HASH个数,一般HASHN是MAXN的两倍左右,MAXLEN表示字符串的最大长度 //K表示正确率,越大正确率越高,当时也越费空间,费时间. //使用前注意初始化hash ...

  2. echart 图表自定义样式

    initChart: function (id) { this.charts = echarts.init(document.getElementById(id)) this.charts.setOp ...

  3. 【python】-- 基本语法、循环

    数据类型 1.数字: int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位系统上,整数的位数为64位,取 ...

  4. Bootstrap第3天

    Bootstrap第3天 图片样式 .img-responsive:直接为图片添加该样式,可以实现响应式图片. .center-block:图片居中样式,而不能使用text-center样式. 图片形 ...

  5. js面对对象编程

    说到js,非常大一部分人会说我非常熟悉,在日常的web开发中经经常使用,那么你的js代码是符合面对对象思路的吗?那你会问我面向过程的js代码有什么不好吗?我的感受是面对对象的js编码更加简洁,降低了混 ...

  6. Spring 拦截器——HandlerInterceptor

    采用Spring拦截器的方式进行业务处理.HandlerInterceptor拦截器常见的用途有: 1.日志记录:记录请求信息的日志,以便进行信息监控.信息统计.计算PV(Page View)等. 2 ...

  7. c# 文件IO操作 StreamReader StreamWriter Split 使用

    StreamWriter(String,Boolean) 若要追加数据到该文件中,则为 true:若要覆盖该文件,则为 false. 如果指定的文件不存在,该参数无效,且构造函数将创建一个新文件. 例 ...

  8. jquery 初篇

    一.什么是jQuery对象? jQuery 对象就是通过jQuery包装DOM对象后产生的对象. jQuery 对象是 jQuery 独有的. 如果一个对象是 jQuery 对象, 那么它就可以使用  ...

  9. java深入探究02

    web前端 html javascript Dom,BOM xml css Bootstrap

  10. 分治思想求解X的M次幂方

    package main import ( "fmt" ) //递归形式分治求解 func power(x, m int) int { { } else { y := power( ...