传送门

此题剧毒,公式恐惧症患者请直接转去代码→_→

前置芝士

基本数论芝士

题解

本题就是要我们求三个函数的值

\[f(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac{ai+b}{c}\right\rfloor
\]

\[g(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac{ai+b}{c}\right\rfloor^2
\]

\[h(a,b,c,n)=\sum_{i=0}^n i\left\lfloor\frac{ai+b}{c}\right\rfloor
\]

先考虑\(f\),如果\(a\)为\(0\),那么显然$$f(a,b,c,n)=(n+1)\frac{b}{c}$$

根据基本数论芝士,有$$\left\lfloor\frac{ax}{b}\right\rfloor=\left\lfloor\frac{a(x% b)}{b}\right\rfloor+a\left\lfloor\frac{x}{b}\right\rfloor$$

所以,当\(a\geq c\)或\(b\geq c\)时,有$$f(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac{(a\bmod c)i+(b\bmod c)}{c}\right\rfloor+i\left\lfloor\frac{a}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor$$

\[f(a,b,c,n)=f(a\bmod c,b\bmod c,c,n)+\frac{n(n+1)}{2}\left\lfloor\frac{a}{c}\right\rfloor+(n+1)\left\lfloor\frac{b}{c}\right\rfloor
\]

然后考虑\(a<c\)且\(b<c\)的情况

\[f(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac{ai+b}{c}\right\rfloor
\]

令\(M=\left\lfloor\frac{an+b}{c}\right\rfloor\)

\[f(a,b,c,n)=\sum_{i=0}^n\sum_{j=1}^M \left[\left\lfloor\frac{ai+b}{c}\right\rfloor\geq j\right]
\]

\[f(a,b,c,n)=\sum_{i=0}^n\sum_{j=1}^M \left[ai+b\geq jc\right]
\]

\[f(a,b,c,n)=\sum_{i=0}^n\sum_{j=0}^{M-1} \left[ai+b> jc+c-1\right]
\]

\[f(a,b,c,n)=\sum_{j=0}^{M-1}\sum_{i=0}^n\left[i>\left\lfloor\frac{jc+c-b-1}{a}\right\rfloor\right]
\]

\[f(a,b,c,n)=\sum_{j=0}^{M-1}n-\left\lfloor\frac{jc+c-b-1}{a}\right\rfloor
\]

\[f(a,b,c,d)=nM-f(c,c-b-1,a,M-1)
\]

综上,\(f\)就可以递归计算了,

\[f(a,b,c,n)=\begin{cases}(n+1)\lfloor\frac{b}{c}\rfloor&,a=0\\\frac{n(n+1)}{2}\lfloor\frac{a}{c}\rfloor+(n+1)\lfloor\frac{b}{c}\rfloor+f(a\bmod c,b\bmod c,c,n)&,a\ge c\ or\ b\ge c\\nM-f(c,c-b-1,a,M-1),M=\lfloor\frac{an+b}{c}\rfloor &,otherwise\end{cases}
\]

发现这东西是\((a,c)->(c,a)->(c\bmod a,a)\),很像\(\gcd\)的过程,所以这玩意儿的复杂度和\(\gcd\)差不多,都是\(O(\log n)\)

接下来我们要计算\(g,h\),这两个因为有关联所以我们可以放到一起算

当\(a=0\)时,有

\[g(a,b,c,n)=(n+1)\left\lfloor\frac{b}{c}\right\rfloor^2
\]

\[h(a,b,c,n)=\frac{n(n+1)}{2}\left\lfloor\frac{b}{c}\right\rfloor
\]

然后考虑\(a\geq c\)或者\(b\geq c\)的情况,有

\[g(a,b,c,n)=\sum_{i=0}^n\left(\left\lfloor\frac{(a\bmod c)i+(b\bmod c)}{c}\right\rfloor+i\left\lfloor\frac{a}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor\right)^2
\]

\[g(a,b,c,n)=\sum_{i=0}^n\left\lfloor\frac{(a\bmod c)i+(b\bmod c)}{c}\right\rfloor^2+2\left(i\left\lfloor\frac{a}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor\right)\left\lfloor\frac{(a\bmod c)i+(b\bmod c)}{c}\right\rfloor+\left(i\left\lfloor\frac{a}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor\right)^2
\]

\[g(a,b,c,n)=g(a\bmod c,b\bmod c,c,n)+2\left\lfloor\frac{a}{c}\right\rfloor h(a\bmod c,b\bmod c,c,n)+2\left\lfloor\frac{b}{c}\right\rfloor f(a\bmod c,b\bmod c,c,n)+\sum_{i=0}^ni^2\left\lfloor\frac{a}{c}\right\rfloor+2i\left\lfloor\frac{a}{c}\right\rfloor\left\lfloor\frac{b}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor^2
\]

\[g(a,b,c,n)=g(a\bmod c,b\bmod c,c,n)+2\left\lfloor\frac{a}{c}\right\rfloor h(a\bmod c,b\bmod c,c,n)+2\left\lfloor\frac{b}{c}\right\rfloor f(a\bmod c,b\bmod c,c,n)+\frac{n(n+1)(2n+1)}{6}\left\lfloor\frac{a}{c}\right\rfloor+n(n+1)\left\lfloor\frac{a}{c}\right\rfloor\left\lfloor\frac{b}{c}\right\rfloor+(n+1)\left\lfloor\frac{b}{c}\right\rfloor^2
\]

然后\(h\)的话就是

\[h(a,b,c,n)=\sum_{i=0}^n i\left(\left\lfloor\frac{(a\bmod c)i+(b\bmod c)}{c}\right\rfloor+i\left\lfloor\frac{a}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor\right)
\]

\[h(a,b,c,n)=h(a\bmod c,b\bmod c,c,n)+\frac{n(n+1)(2n+1)}{6}\left\lfloor\frac{a}{c}\right\rfloor+\frac{n(n+1)}{2}\left\lfloor\frac{b}{c}\right\rfloor
\]

然后就是\(a<c\)且\(b<c\)的情况,依旧令\(M=\left\lfloor\frac{an+b}{c}\right\rfloor\)

发现\(\left\lfloor\frac{ai+b}{c}\right\rfloor^2\)不好搞,因为有\(x^2=-x+2\sum_{i=1}^x i\),那么就可以继续推倒了

\[g(a,b,c,n)=\sum_{i=0}^n\left(-\left\lfloor\frac{ai+b}{c}\right\rfloor+2\sum_{j=1}^{\left\lfloor\frac{ai+b}{c}\right\rfloor} j\right)
\]

\[g(a,b,c,n)=-f(a,b,c,n)+2\sum_{i=0}^n\sum_{j=1}^M j\left[j\leq \left\lfloor\frac{ai+b}{c}\right\rfloor\right]
\]

后面那个东西就和算\(f\)的时候一样搞掉

\[g(a,b,c,n)=-f(a,b,c,n)+2\sum_{j=0}^{M-1}(j+1)(n-\left\lfloor\frac{jc+c-b-1}{a}\right\rfloor)
\]

\[g(a,b,c,n)=-f(a,b,c,n)+nm(m+1)-2h(c,c-b-1,a,M-1)-2f(c,c-b-1,a,M-1)
\]

\(g\)就算好了,然后来算\(h\)

\[h(a,b,c,n)=\sum_{i=0}^ni\sum_{j=1}^M \left[\left\lfloor\frac{ai+b}{c}\right\rfloor\geq j\right]
\]

\[h(a,b,c,n)=\sum_{j=0}^{M-1}\sum_{i=0}^ni\left[i>\left\lfloor\frac{jc+c-b-1}{a}\right\rfloor\right]
\]

\[h(a,b,c,n)=\sum_{j=0}^{M-1}\frac{n(n+1)}{2}-\sum_{i=0}^ni\left[i\leq \left\lfloor\frac{jc+c-b-1}{a}\right\rfloor\right]
\]

\[h(a,b,c,n)=\sum_{j=0}^{M-1}\frac{n(n+1)}{2}-\frac{\left\lfloor\frac{jc+c-b-1}{a}\right\rfloor(\left\lfloor\frac{jc+c-b-1}{a}\right\rfloor+1)}{2}
\]

\[h(a,b,c,n)=\frac{1}{2}\left[nm(n+1)-g(c,c-b-1,a,M-1)-f(c,c-b-1,a,M-1) \right]
\]

然后就可以了

\[g(a,b,c,n)=\begin{cases}(n+1)\lfloor\frac{b}{c}\rfloor^2&,a=1\\g(a\bmod c,b\bmod c,c,n)+2\lfloor\frac{a}{c}\rfloor h(a\bmod c,b\bmod c,c,n)+\\2\lfloor\frac{b}{c}\rfloor f(a\bmod c,b\bmod c,c,n)+\frac{n(n+1)(2n+1)}{6}\lfloor\frac{a}{c}\rfloor^2+\\n(n+1)\lfloor\frac{a}{c}\rfloor\lfloor\frac{b}{c}\rfloor+(n+1)\lfloor\frac{b}{c}\rfloor^2&,a\ge c\ or\ b\ge c\\nM(M+1)-f(a,b,c,n)-2h(c,c-b-1,a,M-1)-\\2f(c,c-b-1,a,M-1)&,otherwise\end{cases}
\]

\[h(a,b,c,n)=\begin{cases}\frac{n(n+1)}{2}\lfloor\frac{b}{c}\rfloor&,a=0\\h(a\bmod c,b\bmod c,c,n)+\frac{n(n+1)(2n+1)}{6}\lfloor\frac{a}{c}\rfloor+\frac{n(n+1)}{2}\lfloor\frac{b}{c}\rfloor&,a\ge c\ or\ b\ge c\\\frac{1}{2}[Mn(n+1)-g(c,c-b-1,a,M-1)-f(c,c-b-1,a,M-1)]&,otherwise\end{cases}
\]

递归计算就行了,顺便记得把\(f,g,h\)同步计算

总算写完了→_→

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res=1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]=' ';
}
const int P=998244353,inv2=499122177,inv6=166374059;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
inline int pow(R int x){return mul(x,x);}
inline int s(R int x){return 1ll*x*(x+1)%P*inv2%P;}
inline int ss(R int x){return 1ll*x*(x+1)%P*((x<<1)+1)%P*inv6%P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct node{int f,g,h;}res;
int n;
node get(int a,int b,int c,int n){
node res;
int x=a/c,y=b/c;
if(!a){
res.f=1ll*y*(n+1)%P;
res.g=1ll*pow(y)*(n+1)%P;
res.h=1ll*y*s(n)%P;
return res;
}
if(a>=c||b>=c){
res=get(a%c,b%c,c,n);
res.g=add(res.g,add(1ll*(x<<1)*res.h%P,add(1ll*(y<<1)*res.f%P,add(1ll*ss(n)*pow(x)%P,add(1ll*n*(n+1)%P*x%P*y%P,1ll*(n+1)*pow(y)%P)))));
res.h=add(res.h,add(1ll*ss(n)*x%P,1ll*s(n)*y%P));
res.f=add(res.f,add(1ll*s(n)*x%P,1ll*(n+1)*y%P));
return res;
}
int M=(1ll*a*n+b)/c;
res=get(c,c-b-1,a,M-1);
int h=res.h,g=res.g,f=res.f;
res.f=dec(1ll*n*M%P,res.f);
res.g=dec(dec(dec(1ll*n*M%P*(M+1)%P,res.f),mul(h,2)),mul(f,2));
res.h=1ll*inv2*dec(dec(1ll*M*n%P*(n+1)%P,g),f)%P;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();
while(T--){
int n=read(),a=read(),b=read(),c=read();
res=get(a,b,c,n);
print(res.f),print(res.g),print(res.h),sr[K]='\n';
}
return Ot(),0;
}

洛谷P5170 【模板】类欧几里得算法(数论)的更多相关文章

  1. 洛谷.4525.[模板]自适应辛普森法1(Simpson积分)

    题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程 ...

  2. [P5170] 类欧几里得算法

    "类欧几里得算法"第二题 P5170 [题意]已知\(n,a,b,c\),求 \[ \begin{aligned} f_{1}(a,b,c,n)&=\sum_{i=0}^n ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 模板——扩展欧几里得算法(求ax+by=gcd的解)

    Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...

  5. LOJ138 类欧几里得算法

    类欧几里得算法 给出 \(T\) 组询问,每组用 \(n, a, b, c, k_1, k_2\) 来描述.对于每组询问,请你求出 \[ \sum_{x = 0} ^ {n} x ^ {k_1} {\ ...

  6. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  7. Luogu 5170 【模板】类欧几里得算法

    原理不难但是写起来非常复杂的东西. 我觉得讲得非常好懂的博客.   传送门 我们设 $$f(a, b, c, n) = \sum_{i = 0}^{n}\left \lfloor \frac{ai + ...

  8. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  9. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  10. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

随机推荐

  1. UVA 10158 War(并查集)

    //思路详见课本 P 214 页 思路:直接用并查集,set [ k ]  存 k 的朋友所在集合的代表元素,set [ k + n ] 存 k  的敌人 所在集合的代表元素. #include< ...

  2. Python基础-os、sys模块

    一,os模块import os ,sysos.system('ipconfig')#执行操作系统命令,获取不到返回结果 os.popen()#也可以执行操作系统命令,可以返回命令执行结果,但需要rea ...

  3. python习题-用交集方式产生随机密码

    # 1.写一个产生密码的程序,# 输入次数,输入多少次就产生多少条数据,# 要求密码必须包含大写字母.小写字母和数字,长度8位,不能重复 import string ,random num=input ...

  4. php将一个二维数组按照某个字段值合并成一维数组,如果有重复则将重复的合并成二维数组

    版权声明:本文为博主原创文章,未经博主允许不得转载. 最近工作中碰到一个问题,用PHP将一个二维数组按照二维数组中的各个项中的某个特定字段值合并成一维数组,如果有重复则将重复的合并成二维数组,生成的二 ...

  5. linux命令学习笔记(12):more命令

    more命令,功能类似 cat ,cat命令是整个文件的内容从上到下显示在屏幕上. more会以一页一页的显示方便 使用者逐页阅读,而最基本的指令就是按空白键(space)就往下一页显示,按 b 键就 ...

  6. bzoj 3926: 诸神眷顾的幻想乡 广义后缀自动机

    题目: Description 幽香是全幻想乡里最受人欢迎的萌妹子,这天,是幽香的2600岁生日,无数幽香的粉丝到了幽香家门前的太阳花田上来为幽香庆祝生日. 粉丝们非常热情,自发组织表演了一系列节目给 ...

  7. JAVA JDBC 读取配置文件链接数据库(oracle)

    ----db.properties-------- dbDriver = oracle.jdbc.driver.OracleDriverurl = jdbc:oracle:thin:@192.168. ...

  8. 11g 如何添加,替换,移除,迁移 OCR ?

    一: 增加 裸设备上,创建至少280MB的裸设备,权限是640,属主是root:oinstall共享文件系统 Or NFS,创建空文件,权限是640,属主是root:oinstall root用户执行 ...

  9. Azure上部署FTP服务

    FTP是个比较复杂的协议,其协议分为控制层和数据层,工作模式分为主动和被动两种模式. 在默认的Active模式下其工作原理如下: 可以看到,客户端发起FTP的请求道服务器端,FTP的端口是21.用户在 ...

  10. SqlServer2005的备份和还原(不同服务器)

    1 备份数据库NorthSJ 进入服务器,进入SqlServer2005,选择数据库NorthSJ进行备份