LeetCode 887.鸡蛋掉落(C++)
每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去。
你知道存在楼层 F
,满足 0 <= F <= N
任何从高于 F
的楼层落下的鸡蛋都会碎,从 F
楼层或比它低的楼层落下的鸡蛋都不会破。
每次移动,你可以取一个鸡蛋(如果你有完整的鸡蛋)并把它从任一楼层 X
扔下(满足 1 <= X <= N
)。
你的目标是确切地知道 F
的值是多少。
无论 F
的初始值如何,你确定 F
的值的最小移动次数是多少?
示例 1:
输入:K = 1, N = 2
输出:2
解释:
鸡蛋从 1 楼掉落。如果它碎了,我们肯定知道 F = 0 。
否则,鸡蛋从 2 楼掉落。如果它碎了,我们肯定知道 F = 1 。
如果它没碎,那么我们肯定知道 F = 2 。
因此,在最坏的情况下我们需要移动 2 次以确定 F 是多少。
示例 2:
输入:K = 2, N = 6
输出:3
示例 3:
输入:K = 3, N = 14
输出:4
提示:
1 <= K <= 100
1 <= N <= 10000
转载:思路
根据https://github.com/Shellbye/Shellbye.github.io/issues/42换角度思考得到
dp[k][m] 的含义是k个鸡蛋 移动m次最多能够确定多少楼层
这个角度思考
dp[k][m] 最多能够确定的楼层数为L
那么我选定第一个扔的楼层之后,我要么碎,要么不碎
这就是把L分成3段
左边是碎的那段 长度是dp[k][m - 1]
右边是没碎的那段 长度是dp[k-1][m - 1] 因为已经碎了一个了
中间是我选定扔的楼层 是1
所以递推公式(状态方程)是
dp[k][m] = dp[k - ][m - ] + dp[k][m - ] +
根据递推公式 如果采用k倒着从大到小计算 就可以只存一行的dp[k] 直接原地更新dp[k] 不影响后续计算 只需要O(K)空间复杂度 O(KlogN) 鸡蛋完全够用的时候 就是走LogN步 最差情况是1个鸡蛋走N步 O(KN)
#include <iostream>
#include <vector>
#include <algorithm> using namespace std; static int x = []() {std::ios::sync_with_stdio(false); cin.tie(); return ; }();
class Solution {
public:
int superEggDrop(int K, int N) {
vector<int> dp(K + , );
int m = ;
while (dp[K] < N) {//表示当能够测试的最大楼层数刚好是我们需要的楼层数N时,此时取得m的最小值。
m++;
for (int k = K; k > ; --k) {
dp[k] = dp[k - ] + dp[k] + ;//逆向遍历,不断更新dp[k],使得dp[k]取最大值(能够测试的最大楼层数)
}
}
return m;
}
}; int main()
{
Solution A;
cout << A.superEggDrop(, ); system("PAUSE");
return ;
}
#include <iostream>
#include <vector> using namespace std; class Solution {
public:
int superEggDrop(int K, int N) {
vector<vector<int> > dp(K + , vector<int>(N, ));
int m = ;
while(dp[K][m] < N){
++m;
for(int i = K; i > ; i--)
dp[i][m] = dp[i - ][m - ] + dp[i][m - ] + ;
} return m;
}
}; int main()
{
Solution A;
cout << A.superEggDrop(, ); return ;
}
LeetCode 887.鸡蛋掉落(C++)的更多相关文章
- Java实现 LeetCode 887 鸡蛋掉落(动态规划,谷歌面试题,蓝桥杯真题)
887. 鸡蛋掉落 你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑. 每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去. 你知道存在楼层 F ,满足 0 < ...
- 1. 线性DP 887. 鸡蛋掉落 (DP+二分)
887. 鸡蛋掉落 (DP+二分) https://leetcode-cn.com/problems/super-egg-drop/ /*首先分析1个蛋,1个蛋的话,最坏情况需要N次,每次只能从0 1 ...
- 记录Leetcode 鸡蛋掉落 的思路
前言 首先看一下这个题目,是Leetcode的第887题"鸡蛋掉落": 你将获得 `K` 个鸡蛋,并可以使用一栋从 `1` 到 `N` 共有 `N` 层楼的建筑. 每个蛋的功能都是 ...
- 动态规划法(六)鸡蛋掉落问题(一)(egg dropping problem)
继续讲故事~~ 这天,丁丁正走在路上,欣赏着路边迷人的城市风景,突然发现前面的大楼前围了一波吃瓜群众.他好奇地凑上前去,想一探究竟,看看到底发生了什么事情. 原来本市的一位小有名气的科学家 ...
- [LeetCode] 887. Super Egg Drop 超级鸡蛋掉落
You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is iden ...
- Leetcode 887 Super Egg Drop(扔鸡蛋) DP
这是经典的扔鸡蛋的题目. 同事说以前在uva上见过,不过是扔气球.题意如下: 题意: 你有K个鸡蛋,在一栋N层高的建筑上,被要求测试鸡蛋最少在哪一层正好被摔坏. 你只能用没摔坏的鸡蛋测试.如果一个鸡蛋 ...
- [Swift]LeetCode887. 鸡蛋掉落 | Super Egg Drop
You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is ident ...
- LeetCode887鸡蛋掉落——dp
题目 题目链接 你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑.每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去,如果没有碎可以继续使用.你知道存在楼层 F , ...
- LeetCode 887. Super Egg Drop
题目链接:https://leetcode.com/problems/super-egg-drop/ 题意:给你K个鸡蛋以及一栋N层楼的建筑,已知存在某一个楼层F(0<=F<=N),在不高 ...
随机推荐
- AutoResetEvent的使用介绍(用AutoResetEvent实现同步)
前几天碰到一个线程的顺序执行的问题,就是一个异步线程往A接口发送一个数据请求.另外一个异步线程往B接口发送一个数据请求,当A和B都执行成功了,再往C接口发送一个请求.说真的,一直做BS项目,对线程了解 ...
- Data Base sql server 备份数据库
sql server 备份数据库 1.维护计划向导: 右键维护计划-维护计划向导-然后安装提示: 勾选自己要干的事,比如:完整备份数据库.差异备份数据库等等 2.作业计划: 如下图: SQL Serv ...
- 「美团 CodeM 初赛 Round A」最长树链
题目描述 Mr. Walker 最近在研究树,尤其是最长树链问题.现在树中的每个点都有一个值,他想在树中找出最长的链,使得这条链上对应点的值的最大公约数不等于1.请求出这条最长的树链的长度. 输入格式 ...
- POJ - 2528Mayor's posters (离散化+线段树区间覆盖)
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign h ...
- CLH同步队列
原文链接:https://blog.csdn.net/chenssy/article/details/60781148 AQS内部维护着一个FIFO队列,该队列就是CLH同步队列. CLH同步队列是一 ...
- DB2安装步骤
##################################DB2的安装########################### ## 安装前准备 ## 关闭内存地址随机化机制 vi /etc/ ...
- 牛客寒假算法基础集训营4 E applese 涂颜色
链接:https://ac.nowcoder.com/acm/contest/330/E 精通程序设计的 Applese 叕写了一个游戏. 在这个游戏中,有一个 n 行 m 列的方阵.现在它要为这个方 ...
- json遍历,List<Map<String,Object>>遍历
js怎样给input对象追加属性,如disabled $(":textbox").attr({"disabled":true}); List<Map< ...
- POJ1057 FILE MAPPING
题目来源:http://poj.org/problem?id=1057 题目大意:计算机的用户通常希望能够看到计算机存储的文件的层次结构的图形化表示.Microsoft Windows的 " ...
- MySql8最新配置方式(完美)
下载MYSQL8 地址:https://www.mysql.com/downloads/ 1.滑动网页到最下面,选择Community (GPL) Downloads » 2.选择MySQL Comm ...