1086 栈

2003年NOIP全国联赛普及组

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
 
 
 
题目描述 Description

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙

宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。

现在可以进行两种操作,

1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)

2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。(原始状态如上图所示) 。

你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。

输入描述 Input Description

输入文件只含一个整数n(1≤n≤18)

输出描述 Output Description

输出文件只有一行,即可能输出序列的总数目

样例输入 Sample Input

3

样例输出 Sample Output

5

数据范围及提示 Data Size & Hint

当年官方数据有误,用int64(long long)可能会与答案不同,因为最后一个点答案溢出longint的。上传的数据是官方数据。

分类标签 Tags 点此展开

 
看标签
AC代码:
#include<iostream>
using namespace std;
long long n,f=;
int main(){
cin>>n;
for(int i=;i<=n;i++)
f=f*(*i-)/(i+);
cout<<f<<endl;
return ;
}

3112 二叉树计数

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
 
 
 
题目描述 Description

一个有n个结点的二叉树总共有多少种形态

输入描述 Input Description

读入一个正整数n

输出描述 Output Description

输出一个正整数表示答案

样例输入 Sample Input

6

样例输出 Sample Output

132

数据范围及提示 Data Size & Hint

1<=n<=20

分类标签 Tags 点此展开

 
AC代码:
#include<iostream>
using namespace std;
long long n,f=;
int main(){
cin>>n;
for(int i=;i<=n;i++)
f=f*(*i-)/(i+);
cout<<f<<endl;
return ;
}

3134 Circle

 时间限制: 1 s
 空间限制: 32000 KB
 题目等级 : 黄金 Gold
 
 
 
题目描述 Description

在一个圆上,有2*K个不同的结点,我们以这些点为端点,连K条线段,使得每个结点都恰好用一次。在满足这些线段将圆分成最少部分的前提下,请计算有多少种连线的方法

输入描述 Input Description

仅一行,一个整数K(1<=K<=30)

输出描述 Output Description

两个用空格隔开的数,后者为最少将圆分成几块,前者为在此前提下连线的方案数

样例输入 Sample Input

2

样例输出 Sample Output

2 3

数据范围及提示 Data Size & Hint

见题目

分类标签 Tags 点此展开

 
#include<iostream>
using namespace std;
long long n,f=;
int main(){
cin>>n;
for(int i=;i<=n;i++)
f=f*(*i-)/(i+);
cout<<f<<' '<<n+<<endl;
return ;
}

[Catalan数]1086 栈、3112 二叉树计数、3134 Circle的更多相关文章

  1. Codevs 3112 二叉树计数

    3112 二叉树计数 题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Descript ...

  2. Catalan数应用整理

    应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有 ...

  3. codevs 1086 栈(Catalan数)

    题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...

  4. Catalan数 && 【NOIP2003】出栈序列统计

    令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...

  5. Catalan数,括号序列和栈

    全是入门的一些东西.基本全是从别处抄的. 栈: 支持单端插入删除的线性容器. 也就是说,仅允许在其一端加入一个新元素或删除一个元素. 允许操作的一端也叫栈顶,不允许操作的一端也叫栈底. 数个箱子相叠就 ...

  6. 特殊计数序列——Catalan数

    Catalan数 前10项 \(1,1,2,5,14,42,132,429,1430,4862\) (注:从第\(0\)项起) 计算式 \(C_n=\frac{1}{n+1}\dbinom{2n}{n ...

  7. luogu P1044 火车进出栈问题(Catalan数)

    Catalan数就是魔法 火车进出栈问题即: 一个栈(无穷大)的进栈序列为 1,2,3,4,...,n 求有多少个不同的出栈序列? 将问题进行抽象, 假设'+'代表进栈, 则有'-'代表出栈 那么如果 ...

  8. 卡特兰数 codevs 1086 栈

    1086 栈 2003年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description ...

  9. 卡特兰数 Catalan数 ( ACM 数论 组合 )

    卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ...

随机推荐

  1. [Functional Programming] Read and Transform Values from a State ADT’s State (get)

    Many times we need to access and transform state, either in part or in full, to be used when calcula ...

  2. STL学习笔记(迭代器相关辅助函数)

    advance()可令迭代器前进 #include <iterator> void advance(InputIterator& pos,Dist n); 面对Random Acc ...

  3. 禁止右键,Ctrl+A,Ctrl+C,Ctrl+V来禁止复制内容,IE网页另存可禁止,但对火狐浏览器没有用的

    禁止右键,Ctrl+A,Ctrl+C,Ctrl+V来禁止复制内容,IE网页另存可禁止,但对火狐浏览器没有用的. 代码如下:(开发了左键选择,方便阅读)<!DOCTYPE HTML PUBLIC ...

  4. js获取时间查并实现倒计时读条

    <script type="text/javascript"> $().ready(function () {// 每增加一个切换,就要增加一行,tab1不变,其他的都 ...

  5. docker pull net/http: TLS handshake timeout错误解决

    docker pull  net/http: TLS handshake timeout  出现这个错误,原因很明显,我们在围城里,有两种解决办法,一种是用梯子爬围墙,一种是用国内源,下面用国内源 e ...

  6. kernel BUG

    https://kernelnewbies.org/FAQ/BUG BUG() and BUG_ON(condition) are used as a debugging help when some ...

  7. Atitit.ioc 动态配置文件guice 设计原理

    Atitit.ioc 动态配置文件guice 设计原理 1. Bat启动时注入配置文件1 2. ioc调用1 3. Ioc 分发器 配合 apche  MethodUtils.invokeStatic ...

  8. NFS详细分析

    1. NFS服务介绍 1.1什么是NFS服务 NFS(Network File System)即网络文件系统,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端 ...

  9. 我的_vimrc文件

    """"""""""""""""&quo ...

  10. Linux的驱动模块管理:modprobe

    由一段脚本開始: MODULE_PATH=/lib/modules/`uname -r` if [ ! -f ${MODULE_PATH}/modules.dep.bb ]; then # depmo ...