题目链接:LOJ

题目大意:看到题目名字应该都知道是啥了吧。

$1\le N\le 10^{11}$。


阉割版 min_25 筛。发现答案实际上就是 min_25 筛中 $g(N,pl)$ 的值。(取次数 $k=0$ 即可)

在这里再写一遍式子。(用久了应该要背了)

$g(n,0)=n-1$

$g(n,j)=\begin{cases}g(n,j-1)&p_j^2>n\\g(n,j-1)-(g(\lfloor\dfrac{n}{p_j}\rfloor,j)-(j-1))&p_j^2\le n\end{cases}$

直接算即可。时间复杂度 $O(\frac{N^{3/4}}{\log N})$。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
ll n,w[maxn],g[maxn];
int sq,pri[maxn],pl,tot,id1[maxn],id2[maxn];
bool vis[maxn];
inline int id(ll x){return x<=sq?id1[x]:id2[n/x];}
void init(){
sq=sqrt(n);
FOR(i,,sq){
if(!vis[i]) pri[++pl]=i;
FOR(j,,pl){
if(i*pri[j]>sq) break;
vis[i*pri[j]]=true;
if(i%pri[j]==) break;
}
}
for(ll l=,r;l<=n;l=r+){
r=n/(n/l);
w[++tot]=n/l;
if(n/l<=sq) id1[n/l]=tot;
else id2[n/(n/l)]=tot;
g[tot]=w[tot]-;
}
}
void calc(){
FOR(i,,pl) FOR(j,,tot){
if((ll)pri[i]*pri[i]>w[j]) break;
g[j]-=g[id(w[j]/pri[i])]-(i-);
}
}
int main(){
scanf("%lld",&n);
init();
calc();
printf("%lld\n",g[id(n)]);
}

LOJ6235 区间素数个数(min_25筛)的更多相关文章

  1. LOJ.6235.区间素数个数(Min_25筛)

    题目链接 \(Description\) 给定\(n\),求\(1\sim n\)中的素数个数. \(2\leq n\leq10^{11}\). \(Solution\) Min_25筛.只需要求出\ ...

  2. [LOJ6235]区间素数个数

    题目大意: 给定$n(n\leq10^{11})$,求$\pi(n)$. 思路: 计算$\pi$函数有$O(n^{\frac23})$的Lehmer算法,这里考虑$O(\frac{n^{\frac34 ...

  3. loj#6235. 区间素数个数(min25筛)

    题意 题目链接 Sol min25筛的板子题,直接筛出\(g(N, \infty)\)即可 筛的时候有很多trick,比如只存\(\frac{N}{x}\)的值,第二维可以滚动数组滚动掉 #inclu ...

  4. loj #6235. 区间素数个数

    #6235. 区间素数个数 题目描述 求 1∼n 1\sim n1∼n 之间素数个数. 输入格式 一行一个数 n nn . 输出格式 一行一个数,表示答案. 样例 样例输入 10 样例输出 4 样例解 ...

  5. loj #6235. 区间素数个数 min_12.5筛

    \(\color{#0066ff}{ 题目描述 }\) 求 \(1\sim n\) 之间素数个数. \(\color{#0066ff}{输入格式}\) 一行一个数 n . \(\color{#0066 ...

  6. LightOj 1197 - Help Hanzo(分段筛选法 求区间素数个数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1197 题意:给你两个数 a b,求区间 [a, b]内素数的个数, a and b ( ...

  7. Prime Count 求大区间素数个数

    http://acm.gdufe.edu.cn/Problem/read/id/1333 https://www.zhihu.com/question/29580448/answer/44874605

  8. Min_25筛 学习笔记

    这儿只是一个简单说明/概括/总结. 原理见这: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushu ...

  9. 模板 - 数学 - 数论 - Min_25筛

    终于知道发明者的正确的名字了,是Min_25,这个筛法速度为亚线性的\(O(\frac{n^{\frac{3}{4}}}{\log x})\),用于求解具有下面性质的积性函数的前缀和: 在 \(p\) ...

随机推荐

  1. Codeforces 337D Book of Evil:树的直径【结论】

    题目链接:http://codeforces.com/problemset/problem/337/D 题意: 给你一棵树,n个节点. 如果一个节点处放着“罪恶之书”,那么它会影响周围距离不超过d的所 ...

  2. HDU 4055 Number String:前缀和优化dp【增长趋势——处理重复选数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4055 题意: 给你一个由'I', 'D', '?'组成的字符串,长度为n,代表了一个1~n+1的排列中 ...

  3. java:stack栈: Stack 类表示后进先出(LIFO)的对象堆栈

    //Stack 类表示后进先出(LIFO)的对象堆栈 //它提供了通常的 push 和 pop 操作,以及取栈顶点的 peek 方法.测试堆栈是否为空的 empty 方法.在堆栈中查找项并确定到栈顶距 ...

  4. 百度编辑器ueditor的toolbars的各个元素代表的功能说明

    百度编辑器ueditor的toolbars的各个元素代表的功能说明

  5. 在程序中对ArrayList进行排序,并剔除重复元素

    import java.util.*; class sortDemo { public static void main(String[] args) { ArrayList<Object> ...

  6. codeforces 86D D. Powerful array(莫队算法)

    题目链接: D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input stan ...

  7. AngularJS directive简述

    转自:http://segmentfault.com/q/1010000002400734 官方API:http://docs.angularjs.cn/api/ng/service/$compile ...

  8. 洛谷P2878 [USACO07JAN]保护花朵Protecting the Flowers

    题目描述 Farmer John went to cut some wood and left N (2 ≤ N ≤ 100,000) cows eating the grass, as usual. ...

  9. 在oracle中,select语句查询字段中非纯数字值

    最近,将原来的数字符字段转换为数字时,总报错误:无效数字. 如何找出其中哪些是非数字字符的记录?比较麻烦的事.下面是用Oracle DB自带的函数translate可以找出来的 1.创建测试表 Cre ...

  10. 反编译工具Reflector下载(集成FileGenerator和FileDisassembler)

    Reflector是一款比较强大的反编译工具,相信很多朋友都用过它,但reflector本身有很多局限性, 比如只能一个一个的查看方法等,但幸好reflector支持插件功能目前网上有很多reflec ...