聚类算法(二)--BIRCH
BIRCH (balanced iterative reducing and clustering using hierarchies)(名字太长不用管了)
无监督,适合大样本的聚类方法。大多数情况只需扫描一次数据集。(文中有下划线的均表示向量)
一句话概括BIRCH,就是根据某种距离度量方法将数据簇已CF形式表现出来,又根据一定规则在CF树上排列(看不懂没关系)
下面我们展开说。
先讲CF
首先CF代表的是数据簇,哪怕是只有一个点,也看做簇
定义CF(N,LS,SS),N代表数据簇的样本点个数,LS表示数据点同一特征之和,SS表示所有样本点特征值平方值和。
举例说明。
假设上述五点属于一个CF,A(3,4),B(2,3),C(1,4),D(2,5),E(2,4)
N=5,LS=(3+2+1+2+2,4+3+4+5+4)=(10,20),SS=9+16+4+9+1+16+4+25+4+16=104
所以CF=[5,(10,20),104]
那么,CF有个容易理解的性质--可加性,CF1=CF2+CF3=(N2+N3,LS2+LS3,SS2+SS3)
CF还有几个参数:
形心(Centroid):
半径(radius):(表示为簇内一点到形心的距离,类似于标准差,所以可以变换成标准差的计算,$\sqrt{\frac{NSS-LS^{2}}{N^{2}}}$)
(簇内所有点两两之间的平均距离)$\delta =\sqrt{\frac{\sum \sum \left (x_{i}-\overrightarrow{c} \right )^{2}(x_{j}-\overrightarrow{c})^{2}}{N(N-1)}}$
R和δ都表示了簇的紧实度。
某种距离度量方法
即簇与簇之间的距离的度量D,比如
欧几里得距离$\sqrt{(\frac{\sum LS_{1}}{N_{1}}-\frac{\sum LS_{2}}{N_{2}})^{2}}$
曼哈顿距离$\left | \frac{\sum LS_{1}}{N_{1}}-\frac{\sum LS_{2}}{N_{2}} \right |$
一定规则在CF树上排列
一定规则指的是CF树的参数,枝平衡因子β(一个枝节点包含叶节点个数的上限),叶平衡因子λ(一个叶节点包含CF个数的上限),空间阈值τ(簇与簇距离的上限)
这里建造的CF树不保留数据原始信息,只有CF,所以起到压缩数据的作用
现在我们看看如何造树
一棵树一般有根节点(RN,root node),枝节点(BN,branch node),叶节点(LN,leaf node)。
1,首先第一个数据进来,建造CF1,作为根节点。(无任何限制)
2,第二个数据进来,建造CF2,计算簇与簇之间的距离D,若D<τ,将这两点视为同一簇,更新CF1.若D>空间阈值τ,将CF1,CF2都作为枝节点;
3,上面两步只讲到了增加或者膨胀节点,如何分裂节点呢?
举例说明,
在红色情况下设定枝平衡因子β=3,叶平衡因子λ=3,
进来一个新样本点sc8,他与叶节点LN1,2,3中LN1的距离最近,所以应该归入LN1叶节点,
计算sc8与sc1,2,3的距离,均大于空间阈值τ,所以不能并入sc1,2,3,需要给他成为一个独立的簇,
但是由于叶平衡因子λ=3,即一个叶节点包含簇个数的上限为3,所以要将叶节点LN1分裂成两个LN1',LN1''。
但是此时相当于有四个叶节点LN1',LN1'',LN2,LN3,又枝平衡因子β=3,即一个枝节点包含叶节点个数的上限为3,
所以将根节点(本应该为枝节点,此例无枝节点)也一分为二,如下图
还有一个问题,刚才的四个簇sc8,1,2,3,如何分入叶节点LN1',LN1''
求这四个簇相距最远的最为LN1',LN1''的种子CF,将剩余的簇分别计算与种子CF的距离,距离近的归到一个叶节点
具体解释,假设sc8,1,2,3中,sc8和sc2最远,先将这两个簇放入不同的叶节点,然后分别计算sc1,sc3与sc8和sc2的距离,较近的归为种子CF所在的叶节点。
BIRCH适用于大样本,与Mini Batch K-Means类似,但是BIRCH适用于K较大的情况,Mini Batch K-Means适用K适中或较小
当维度较大时,Mini Batch K-Means比BIRCH表现的好。
参考:
https://www.cnblogs.com/pinard/p/6179132.html
https://www.cnblogs.com/tiaozistudy/p/6129425.html
https://en.wikipedia.org/wiki/BIRCH
聚类算法(二)--BIRCH的更多相关文章
- 聚类算法之BIRCH(Java实现)转载
http://www.cnblogs.com/zhangchaoyang/articles/2200800.html http://blog.csdn.net/qll125596718/article ...
- 机器学习:Python实现聚类算法(二)之AP算法
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...
- 关于k-means聚类算法的matlab实现
在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类 ...
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
- BIRCH聚类算法原理
在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理.这里我们再来看看另外一种常见的聚类算法BIRCH.BIRCH算法比较适合于数据量大,类别数K也 ...
- 多种聚类算法概述(BIRCH, DBSCAN, K-means, MEAN-SHIFT)
BIRCH:是一种使用树分类的算法,适用的范围是样本数大,特征数小的算法,因为特征数大的话,那么树模型结构就会要复杂很多 DBSCAN:基于概率密度的聚类方法:速度相对较慢,不适用于大型的数据,输入参 ...
- 机器学习:Python实现聚类算法(三)之总结
考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作 ...
- 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...
- ML: 聚类算法-概论
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研 ...
- DBSCAN密度聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...
随机推荐
- JS正则表达式,记录自己所学所用的内容
还没接触正则表达式感觉确实有那么点难度,但接触到后自己琢磨了几天也没发现那么难. 现在教教刚学的或者还没接触正则表达式的同学们入入门,一起学习. 正则表达式基本语法 ***************** ...
- django1.8.3搭建博客——1
系统:elementary os python 2.7.6 django 1.8.3 1.安装django 先安装pip sudo apt-get install python3-pip 安装dj ...
- 分享知识-快乐自己:Liunx—Maven 部署步骤
第一步: 点我下载 Liunx—Maven Linux命令下载:wget [下载文件存放路径] [下载文件地址] 第二步: 上传 Maven 并解压到 指定的目录:(上传方式 xftp 或 rz ...
- Python3之hashlib模块
Python3之hashlib 简介: 用于加密相关的操作,代替了md5模块和sha模块,主要提供SHA1,SHA224,SHA256,SHA384,SHA512,MD5算法.在python3中已 ...
- Python基础-读取excel
import xlrdbook = xlrd.open_workbook('lanxia.xls')sheet = book.sheet_by_name('sheet1')rows = sheet.n ...
- Linux_服务器_08_网卡eth1修改为eth0
一.现象 二.解决步骤 1.修改 70-persistent-net.rules 执行命令: vim /etc/udev/rules.d/-persistent-net.rules 找到与ifconf ...
- BEC listen and translation exercise 42
These were built for the workers towards the end of the eighteenth century, and they are still furni ...
- 菜单栏(QMenuBar)与菜单(QMenu)
之前一直搞不清楚什么是菜单栏,后来看了文档才知道是怎么一回事,下面是我本人对菜单栏和菜单的理解,可能存在理解错误. 一.菜单栏 菜单栏是容纳菜单的一个容器,里面可以存放菜单列表,用菜单栏的目的就是为了 ...
- Struts2 - ModelDriven 拦截器、Preparable 拦截器
开篇:拦截器在Struts中的作用 在我们的web.xml中,我们配置了一个过滤器,实现将所有请求交付StrutsPrepareAndExecuteFilter类.一旦接受到任意action的请求,该 ...
- 【leetcode刷题笔记】Construct Binary Tree from Preorder and Inorder Traversal
Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...