1、交叉验证

交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。

于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。

交叉验证是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize)。
交叉验证一般要尽量满足:

1)训练集的比例要足够多,一般大于一半
2)训练集和测试集要均匀抽样

将数据集A随机分为k个包,每次将其中一个包作为测试集,剩下k-1个包作为训练集进行训练。
在matlab中,可以利用:
indices=crossvalind('Kfold',x,k);
来实现随机分包的操作,其中x为一个N维列向量(N为数据集A的元素个数,与x具体内容无关,只需要能够表示数据集的规模),k为要分成的包的总个数,输出的结果indices是一个N维列向量,每个元素对应的值为该单元所属的包的编号(即该列向量中元素是1~k的整随机数),利用这个向量即可通过循环控制来对数据集进行划分。例:
[M,N]=size(data);//数据集为一个M*N的矩阵,其中每一行代表一个样本
    indices=crossvalind('Kfold',data(1:M,N),10);//进行随机分包
    for k=1:10//交叉验证k=10,10个包轮流作为测试集
        test = (indices == k); //获得test集元素在数据集中对应的单元编号
        train = ~test;//train集元素的编号为非test元素的编号
        train_data=data(train,:);//从数据集中划分出train样本的数据
 train_target=target(:,train);//获得样本集的测试目标,在本例中是实际分类情况
        test_data=data(test,:);//test样本集
 test_target=target(:,test);
[HammingLoss(1,k),RankingLoss(1,k),OneError(1,k),Coverage(1,k),Average_Precision(1,k),Outputs,Pre_Labels.MLKNN]=MLKNN_algorithm(train_data,train_target,test_data,test_target);//要验证的算法
 end
//上述结果为输出算法MLKNN的几个验证指标及最后一轮验证的输出和结果矩阵,每个指标都是一个k元素的行向量

交叉验证的目的:假设分类器或模型有一个或多个未知的参数,并且设这个训练器(模型)与已有样本数据集(训练数据集)匹配。训练的过程是指优化模型的参数,以使得分类器或模型能够尽可能的与训练数据集匹配。我们在同一数据集总体中,取一个独立的测试数据集。

当用于模型训练的数据量越大时,训练出来的模型通常效果会越好。所以训练集和测试集的划分意味着我们无法充分利用我们手头已有的数据,所以得到的模型效果也会受到一定的影响。

K折交叉验证能充分利用现有的数据。

K倍交叉验证(K>=2)。将样本数据集随机划分为K个子集(一般是均分),将一个子集数据作为测试集,其余的K-1组子集作为训练集;

将K个子集轮流作为测试集,重复上述过程,这样得到了K个分类器或模型,并利用测试集得到了K个分类器或模型的分类准确率。

用K个分类准确率的平均值作为分类器或模型的性能指标。10-倍交叉证实是比较常用的。
优点:每一个样本数据都即被用作训练数据,也被用作测试数据。避免的过度学习和欠学习状态的发生,得到的结果比较具有说服力。

2、

非负矩阵分解(NMF,Non-negative matrix factorization)
NMF的基本思想
  NMF的基本思想可以简单描述为:对于任意给定的一个非负矩阵A,NMF算法能够寻找到一个非负矩阵U和一个非负矩阵V,使得满足 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积。
NMF问题描述
传统的NMF问题可以描述如下

论文作者实际的解释是:

  • 非负性会引发稀疏
  • 非负性会使计算过程进入部分分解

机器学习--K折交叉验证和非负矩阵分解的更多相关文章

  1. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  2. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  3. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...

  4. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  5. k折交叉验证

    原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...

  6. K折-交叉验证

    k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据 ...

  7. 偏差(bias)和方差(variance)及其与K折交叉验证的关系

    先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...

  8. (数据挖掘-入门-6)十折交叉验证和K近邻

    主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...

  9. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

随机推荐

  1. Hadoop 运行jar包时 java.lang.ClassNotFoundException: Class com.zhen.mr.RunJob$HotMapper not found

    错误如下 Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.zhen.mr.RunJob$H ...

  2. NLP-最小编辑距离

    最小编辑距离 一 概念 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的编辑操作次数.最小编辑距离,是指所需最小的编辑操作次数. 编辑操 ...

  3. vue-mixins使用注意事项和高级用法

    因为在项目中 mixins(混合)特性使用频率是很高的 有必要熟练掌握官方文档: mixins 实际项目中 一般都存在 列表(list) 这种很常见的使用场景 话再多都不如上demo file: mi ...

  4. jmeter--简单使用

    1.启动jmeter 2.创建线程组 2.点击线程组,选择添加,选择sampler(采样器),选择http请求 3.在添加的请求页面中,填写服务器名称或IP,端口,路径,请求的方法 4.添加请求的参数 ...

  5. linux命令学习笔记(18):locate 命令

    locate 让使用者可以很快速的搜寻档案系统内是否有指定的档案.其方法是先建立一个包括系统内所有档案名称及 路径的数据库,之后当寻找时就只需查询这个数据库,而不必实际深入档案系统之中了.在一般的 d ...

  6. Oracle修改字段名、字段数据类型

    语句:alter table tableName rename column oldCName to newCName; -- 修改字段名alter table tableName modify (c ...

  7. RTSP 协议分析 (一)

    RTSP 协议分析1.概述: RTSP(Real Time Streaming Protocol),实时流传输协议,是TCP/IP协议体系中的一个应用层协议,由哥伦比亚大学.网景和RealNetwor ...

  8. HDOJ1059(多重部分和问题)

    #include<cstdio> #include<cstring> using namespace std; +; ]; int dp[SIZE]; bool check() ...

  9. JVM插码之三:javaagent介绍及javassist介绍

    本文介绍一下,当下比较基础但是使用场景却很多的一种技术,稍微偏底层点,就是字节码插庄技术了...,如果之前大家熟悉了asm,cglib以及javassit等技术,那么下面说的就很简单了...,因为下面 ...

  10. js之翻牌游戏中的一个深刻感悟

    先“上菜”: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...