无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里。我们将 K(ω)改为 K(i,ω) 即可,新的状态表示前 i 件物品放入一个容量为 ω的背包可以获得的最大价值。

现在从以上状态定义出发寻找相应的状态转移方程。K(i−1,ω)为 K(i,ω)的子问题,如果不放第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω 的背包」,此时背包内获得的总价值为 K(i−1,ω);如果放入第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω−ωi 的背包」,此时背包内获得的总价值为 K(i−1,ω−ωi)+vi. 新的状态转移方程用数学语言来表述即为:K(i,ω)=max{K(i−1,ω),K(i−1,ω−ωi)+vi}

这里的分析是以容量递推的,但是在容量特别大时,我们可能需要以价值作为转移方程。定义状态dp[i + 1][j]为前i个物品中挑选出价值总和为j 时总重量的最小值(所以对于不满足条件的索引应该用充分大的值而不是最大值替代,防止溢出)。相应的转移方程为:前i - 1 个物品价值为j, 要么为j - v[i](选中第i个物品). 即dp[i + 1][j] = min{dp[i][j], dp[i][j - v[i]] + w[i]}. 最终返回结果为dp[n][j] ≤ W 中最大的 j.

以上我们只是求得了最终的最大获利,假如还需要输出选择了哪些项如何破?

以普通的01背包为例,如果某元素被选中,那么其必然满足w[i] > j且大于之前的dp[i][j], 这还只是充分条件,因为有可能被后面的元素代替。保险起见,我们需要跟踪所有可能满足条件的项,然后反向计算有可能满足条件的元素,有可能最终输出不止一项。

import java.util.*;

public class Backpack {
// 01 backpack with small datasets(O(nW), W is small)
public static int backpack(int W, int[] w, int[] v, boolean[] itemTake) {
int N = w.length;
int[][] dp = new int[N + 1][W + 1];
boolean[][] matrix = new boolean[N + 1][W + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= W; j++) {
if (w[i] > j) {
// backpack cannot hold w[i]
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i][j - w[i]] + v[i]);
// pick item i and get value j
matrix[i][j] = (dp[i][j - w[i]] + v[i] > dp[i][j]);
}
}
} // determine which items to take
for (int i = N - 1, j = W; i >= 0; i--) {
if (matrix[i][j]) {
itemTake[i] = true;
j -= w[i];
} else {
itemTake[i] = false;
}
} return dp[N][W];
} // 01 backpack with big datasets(O(n\sigma{v}), W is very big)
public static int backpack2(int W, int[] w, int[] v) {
int N = w.length;
// sum of value array
int V = 0;
for (int i : v) {
V += i;
}
// initialize
int[][] dp = new int[N + 1][V + 1];
for (int[] i : dp) {
// should avoid overflow for dp[i][j - v[i]] + w[i]
Arrays.fill(i, Integer.MAX_VALUE >> 1);
}
dp[0][0] = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j <= V; j++) {
if (v[i] > j) {
// value[i] > j
dp[i + 1][j] = dp[i][j];
} else {
// should avoid overflow for dp[i][j - v[i]] + w[i]
dp[i + 1][j] = Math.min(dp[i][j], dp[i][j - v[i]] + w[i]);
}
}
} // search for the largest i dp[N][i] <= W
for (int i = V; i >= 0; i--) {
// if (dp[N][i] <= W) return i;
if (dp[N][i] <= W) return i;
}
return 0;
} // repeated backpack
public static int backpack3(int W, int[] w, int[] v) {
int N = w.length;
int[][] dp = new int[N + 1][W + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= W; j++) {
if (w[i] > j) {
// backpack cannot hold w[i]
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i + 1][j - w[i]] + v[i]);
}
}
} return dp[N][W];
} public static void main(String[] args) {
int[] w1 = new int[]{2, 1, 3, 2};
int[] v1 = new int[]{3, 2, 4, 2};
int W1 = 5;
boolean[] itemTake = new boolean[w1.length + 1];
System.out.println("Testcase for 01 backpack.");
int bp1 = backpack(W1, w1, v1, itemTake); // bp1 should be 7
System.out.println("Maximum value: " + bp1);
for (int i = 0; i < itemTake.length; i++) {
if (itemTake[i]) {
System.out.println("item " + i + ", weight " + w1[i] + ", value " + v1[i]);
}
} System.out.println("Testcase for 01 backpack with large W.");
int bp2 = backpack2(W1, w1, v1); // bp2 should be 7
System.out.println("Maximum value: " + bp2); int[] w3 = new int[]{3, 4, 2};
int[] v3 = new int[]{4, 5, 3};
int W3 = 7;
System.out.println("Testcase for repeated backpack.");
int bp3 = backpack3(W3, w3, v3); // bp3 should be 10
System.out.println("Maximum value: " + bp3);
}
}

【ACM】Knapsack without repetition - 01背包问题的更多相关文章

  1. 【ACM】拦截导弹 - 0-1背包问题

    拦截导弹 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 某国为了防御敌国的导弹袭击,发展中一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到 ...

  2. ACM:动态规划,01背包问题

    题目: 有n件物品和一个容量为C的背包.(每种物品均仅仅有一件)第i件物品的体积是v[i],重量是w[i].选一些物品装到这个背包中,使得背包内物品在整体积不超过C的前提下重量尽量大. 解法:两种思路 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. 【优化算法】变邻域搜索算法解决0-1背包问题(Knapsack Problem)代码实例 已

    01 前言 经过小编这几天冒着挂科的风险,日日修炼,终于赶在考试周中又给大家更新了一篇干货文章.关于用变邻域搜索解决0-1背包问题的代码.怎样,大家有没有很感动? 02 什么是0-1背包问题? 0-1 ...

  5. 0-1背包问题(0-1 knapsack problem)

    0-1背包问题描述:一个正在抢劫商店的小偷发现了n个商品,第i个商品价值 vi 美元,重 wi 磅,vi 和 wi 都是整数.这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳 S 磅重的商品,S ...

  6. HDOJ 2546饭卡(01背包问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...

  7. hdu5188 加限制的01背包问题

    http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...

  8. 01背包问题(Java实现)

    关于背包问题,百度文库上有崔添翼大神的<背包九讲>,不明的请移步查看.这里仅介绍最基本的01背包问题的实现. public class Knapsack { private final i ...

  9. HDU 2602 Bone Collector(经典01背包问题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/O ...

随机推荐

  1. Executor线程池

    Executor线程池框架: 使用线程池的优点: 1.重用存在的线程 2.减少对象创建.消亡的开销 3.性能佳 4.可有效控制最大并发线程数,提高系统资源的使用率 5.避免过多资源竞争,避免堵塞 6. ...

  2. RTX这种东西究竟有什么价值?

    我在第一家公司工作的时候,同事沟通用的就是RTX,第一感觉就是这么简单的软件也能卖钱? 这种东西有啥价值啊?不就是个没广告蓝色UI的qq吗? 还是那句话,当你已经习惯了一个东西之后,你不会感觉到他的价 ...

  3. 使用zookeeper实现服务路由和负载均衡

    三个类: ServiceAProvider ServiceBProvider ServiceConsumer 其中 ServiceAProvider提供的服务名service-A,指向IP为192.1 ...

  4. tomcat8.0的下载安装配置

    配置tomcat前要先配置JDK的环境变量 具体方法请点链接JDK环境变量配置 首先要 到官网下载tomcat tomcat官网 进入官网后 如图在左侧选择自己想要下载的版本,这里我以8.0版本为例 ...

  5. 51NOD1052 最大M字段和

    传送门 分析 一眼看去我们自然会想到dp[i][j][k]表示区间[i,j]中选k个子段的最大值.然后我们考虑降去一维.我们设dp[i][j]表示考虑了前i个数,在选了a[i]的情况下共有j个子段的最 ...

  6. 10.model/view实例(1)

    1.如图显示一个2x3的表格: 思考: 1.QTableView显示这个表 2.QAbstractTableModel作为模型类. 3.文档中找到subclass的描述 When subclassin ...

  7. Django models模型ORM

    一.ORM介绍 映射关系: 表名 -------------------->类名 字段-------------------->属性 表记录----------------->类实例 ...

  8. CodeForces 404C Restore Graph (构造)

    题意:让人构造一个图,满足每个结点边的数目不超过 k,然后给出每个结点到某个结点的最短距离. 析:很容易看出来如果可能的话,树是一定满足条件的,只要从头开始构造这棵树就好,中途超了int...找了好久 ...

  9. 多线程学习-基础( 十一)synchronized关键字修饰方法的简单案例

    一.本案例设计到的知识点 (1)Object的notify(),notifyAll(),wait()等方法 (2)Thread的sleep(),interrupt(). (3)如何终止线程. (4)如 ...

  10. 带参宏定义和inline修饰的内联函数

    带参宏定义和inline修饰的内联函数都是在编译时,用函数体替换掉宏调用或函数调用.这样用的好处是减少调用函数所花费的时间. 例如: 算法导论在讲到堆排序时说的,好的堆排序实现一般是把Left(i), ...