UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖
\(\color{#0066ff}{题目描述}\)
给定n(>0)二维点的笛卡尔坐标,编写一个程序,计算其最小边界矩形的面积(包含所有给定点的最小矩形)。
输入文件可以包含多个测试样例。每个测试样例从包含一个正数的行开始。 整数N(<1001),表示该测试样例中的点的数量。接下来的n行各包含两个实数,分别给出一个点的x和y坐标。输入最后包含一个值为0的测试样例,该值必须不被处理。
对于输入中的每个测试样例都输出一行,包含最小边界矩形的面积,小数点后四舍五入到第四位。
\(\color{#0066ff}{输入格式}\)
\(\color{#0066ff}{输出格式}\)
\(\color{#0066ff}{输入样例}\)
3
-3.000 5.000
7.000 9.000
17.000 5.000
4
10.000 10.000
10.000 20.000
20.000 20.000
20.000 10.000
0
\(\color{#0066ff}{输出样例}\)
80.0000
100.0000
\(\color{#0066ff}{数据范围与提示}\)
none
\(\color{#0066ff}{题解}\)
旋转卡壳
首先先求一遍凸包
对于最小面积外接矩形,显然至少有一条边与凸包重合,就枚举那条边(底边)
对于上面的边,通过叉积叉出面积判断最高位置,找到上边
对于左边,用点积,找到最大点积(投影最长,那么最靠左),右边指针从左边开始找投影最短
每次移动底边,然后更新上左右,来更新ans
#include <bits/stdc++.h>
#define _ 0
#define LL long long
inline LL in() {
LL x = 0, f = 1; char ch;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
while(isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
struct node {
double x,y;
node(double x = 0, double y = 0):x(x), y(y) {}
node operator - (const node &b) const {
return node(x - b.x, y - b.y);
}
double operator ^ (const node &b) const {
return x * b.y - y * b.x;
}
double operator * (const node &b) const {
return x * b.x + y * b.y;
}
double mo() {
return sqrt(x * x + y * y);
}
double jj() const {
return atan2(y, x);
}
};
const int maxn = 10005;
node e[maxn], v[maxn];
int n,top;
double S(node a,node b,node c) {
return (b - a) ^ (c - a);
}
bool cmp(const node &a, const node &b) {
return (a.jj() < b.jj() || (a.jj() == b.jj() && (a - e[0]).mo() < (b - e[0]).mo()));
}
void tubao() {
int min = 0;
for(int i = 0; i < n; i++)
if(e[i].y < e[min].y || (e[i].y == e[min].y && e[i].x < e[min].x)) min = i;
std::swap(e[0], e[min]);
for(int i = 1; i < n; i++) e[i] = e[i] - e[0];
e[0] = 0;
std::sort(e + 1, e + n, cmp);
v[0] = e[0], v[1] = e[1];
for(int i = top = 2; i < n; i++) {
while((top > 1) && (S(v[top - 2], v[top - 1], e[i]) <= 0)) top--;
v[top++] = e[i];
}
v[top] = e[0];
}
double C(node a,node b,node c) {
return (c - a) * (b - a);
}
double rotate()
{
if(top < 3) return 0;
int l = 1, u = 1, r;
double a, b, c, ans = 1e20;
for(int i = 0; i < top; i++) {
while(S(v[i], v[i + 1], v[u + 1]) > S(v[i], v[i + 1], v[u])) u = (u + 1) % top;
while(C(v[i], v[i + 1], v[l + 1]) > C(v[i], v[i + 1], v[l])) l = (l + 1) % top;
if(!i) r = l;
while(C(v[i], v[i + 1], v[r + 1]) <= C(v[i], v[i + 1], v[r])) r = (r + 1) % top;
a = S(v[i], v[i + 1], v[u]);
b = C(v[i], v[i + 1], v[l]) - C(v[i], v[i + 1], v[r]);
c = C(v[i], v[i + 1], v[i + 1]);
ans = std::min(ans, a * b / c);
}
return ans;
}
int main() {
while("fuck") {
n = in();
if(!n) break;
for(int i = 0; i < n; i++) scanf("%lf%lf", &e[i].x, &e[i].y);
tubao();
printf("%.4lf\n", rotate());
}
return 0;
}
UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖的更多相关文章
- LeetCode 939. Minimum Area Rectangle (最小面积矩形)
题目标签:HashMap 题目给了我们一组 xy 上的点坐标,让我们找出 能组成矩形里最小面积的那个. 首先遍历所有的点,把x 坐标当作key 存入map, 把重复的y坐标 组成set,当作value ...
- Smallest Bounding Rectangle - uva10173
Smallest Bounding Rectangle Given the Cartesian coordinates of n(>0)2-dimensional points, write a ...
- 此坑待填 离散化思想和凸包 UVA - 10173 Smallest Bounding Rectangle
Smallest Bounding Rectangle Given the Cartesian coordinates of n(>0)2-dimensional points, write a ...
- LeetCode939 最小面积矩形
LeetCode939最小面积矩形 给定在 xy 平面上的一组点,确定由这些点组成的矩形的最小面积,其中矩形的边平行于 x 轴和 y 轴. 如果没有任何矩形,就返回 0. Input [[1,1],[ ...
- [Swift]LeetCode939. 最小面积矩形 | Minimum Area Rectangle
Given a set of points in the xy-plane, determine the minimum area of a rectangle formed from these p ...
- [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- Leetcode963. Minimum Area Rectangle II最小面积矩形2
给定在 xy 平面上的一组点,确定由这些点组成的任何矩形的最小面积,其中矩形的边不一定平行于 x 轴和 y 轴. 如果没有任何矩形,就返回 0. 示例 1: 输入:[[1,2],[2,1],[1,0] ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- hdu5251最小矩形覆盖
题意(中问题直接粘吧)矩形面积 Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少. Input ...
随机推荐
- jenkins学习 01 jenkins介绍
jenkins 是一个可扩展的持续集成引擎. 使用Jenkins目的: 持续.自动地构建/测试软件项目. 监控一些定时执行的任务. jenkins拥有的特性: 易于安装,只要jenkins.war部署 ...
- 侯捷STL学习(七)--深度探索vector&&array
layout: post title: 侯捷STL学习(七) date: 2017-06-13 tag: 侯捷STL --- 第十六节 深度探索vector vector源码剖析 vector内存2倍 ...
- 简单叙述一下MYSQL的优化
一个面试题.每次没能完全答对.各位补充一下.或者发表自己的答案:cry: 现在大概列出如下:(忘各位补充)1.数据库的设计尽量把数据库设计的更小的占磁盘空间.1).尽可能使用更小的整数类型.(medi ...
- NodeJs之文件合并(某一文件的内容发生变化与之相关的内容重新合并)
首先,一个文件里面的内容是由多个文件共同组成的.例如一个文件夹包含有多文件(文件夹) 然后,当其中一个发生变化时所用与之有直接作用的文件(文件夹)都会重新组合. /*注意:该例子需要在同级目录下完成及 ...
- pipeline(管道的连续应用)
# -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:55:06 2016 @author: Administrato ...
- Delphi XE2 新控件 布局Panel TGridPanel TFlowPanel
Delphi XE2 新控件 Firemonkey 布局Panel Windows平台VCl TGridPanel TFlowPanel FMX 跨平台 TLayout TGridLayout TFl ...
- C语言学习笔记--#和##操作符
1. #运算符 (1)#运算符用于在预处理期将宏的参数转换为字符串 (2)#的转换作用是在预处理期完成的,因此只在宏定义中有效,即其他地方不能用#运算符 (3)用法:#define STRING(x) ...
- CMake 使用方法 & CMakeList.txt<转>
CMake 使用方法 & CMakeList.txt cmake 简介 CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程).他能够输出各种各样的make ...
- PTA 估值一亿的AI核心代码
题面 比赛时被模拟题打自闭了,本来以为是个比较麻烦的模拟,实际上只要会C++的regex不到40行就能把这个题过掉了(orz smz) regex是用来处理正则表达式,里面有个函数regex_repl ...
- Amazon S3 云服务
一.简介 Amazon Simple Storage Service (S3) 是一个公开的服务,Web 应用程序开发人员可以使用它存储数字资产,包括图片.视频.音乐和文档. S3 提供一个 REST ...