UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖
\(\color{#0066ff}{题目描述}\)
给定n(>0)二维点的笛卡尔坐标,编写一个程序,计算其最小边界矩形的面积(包含所有给定点的最小矩形)。
输入文件可以包含多个测试样例。每个测试样例从包含一个正数的行开始。 整数N(<1001),表示该测试样例中的点的数量。接下来的n行各包含两个实数,分别给出一个点的x和y坐标。输入最后包含一个值为0的测试样例,该值必须不被处理。
对于输入中的每个测试样例都输出一行,包含最小边界矩形的面积,小数点后四舍五入到第四位。
\(\color{#0066ff}{输入格式}\)
\(\color{#0066ff}{输出格式}\)
\(\color{#0066ff}{输入样例}\)
3
-3.000 5.000
7.000 9.000
17.000 5.000
4
10.000 10.000
10.000 20.000
20.000 20.000
20.000 10.000
0
\(\color{#0066ff}{输出样例}\)
80.0000
100.0000
\(\color{#0066ff}{数据范围与提示}\)
none
\(\color{#0066ff}{题解}\)
旋转卡壳
首先先求一遍凸包
对于最小面积外接矩形,显然至少有一条边与凸包重合,就枚举那条边(底边)
对于上面的边,通过叉积叉出面积判断最高位置,找到上边
对于左边,用点积,找到最大点积(投影最长,那么最靠左),右边指针从左边开始找投影最短
每次移动底边,然后更新上左右,来更新ans
#include <bits/stdc++.h>
#define _ 0
#define LL long long
inline LL in() {
LL x = 0, f = 1; char ch;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
while(isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
struct node {
double x,y;
node(double x = 0, double y = 0):x(x), y(y) {}
node operator - (const node &b) const {
return node(x - b.x, y - b.y);
}
double operator ^ (const node &b) const {
return x * b.y - y * b.x;
}
double operator * (const node &b) const {
return x * b.x + y * b.y;
}
double mo() {
return sqrt(x * x + y * y);
}
double jj() const {
return atan2(y, x);
}
};
const int maxn = 10005;
node e[maxn], v[maxn];
int n,top;
double S(node a,node b,node c) {
return (b - a) ^ (c - a);
}
bool cmp(const node &a, const node &b) {
return (a.jj() < b.jj() || (a.jj() == b.jj() && (a - e[0]).mo() < (b - e[0]).mo()));
}
void tubao() {
int min = 0;
for(int i = 0; i < n; i++)
if(e[i].y < e[min].y || (e[i].y == e[min].y && e[i].x < e[min].x)) min = i;
std::swap(e[0], e[min]);
for(int i = 1; i < n; i++) e[i] = e[i] - e[0];
e[0] = 0;
std::sort(e + 1, e + n, cmp);
v[0] = e[0], v[1] = e[1];
for(int i = top = 2; i < n; i++) {
while((top > 1) && (S(v[top - 2], v[top - 1], e[i]) <= 0)) top--;
v[top++] = e[i];
}
v[top] = e[0];
}
double C(node a,node b,node c) {
return (c - a) * (b - a);
}
double rotate()
{
if(top < 3) return 0;
int l = 1, u = 1, r;
double a, b, c, ans = 1e20;
for(int i = 0; i < top; i++) {
while(S(v[i], v[i + 1], v[u + 1]) > S(v[i], v[i + 1], v[u])) u = (u + 1) % top;
while(C(v[i], v[i + 1], v[l + 1]) > C(v[i], v[i + 1], v[l])) l = (l + 1) % top;
if(!i) r = l;
while(C(v[i], v[i + 1], v[r + 1]) <= C(v[i], v[i + 1], v[r])) r = (r + 1) % top;
a = S(v[i], v[i + 1], v[u]);
b = C(v[i], v[i + 1], v[l]) - C(v[i], v[i + 1], v[r]);
c = C(v[i], v[i + 1], v[i + 1]);
ans = std::min(ans, a * b / c);
}
return ans;
}
int main() {
while("fuck") {
n = in();
if(!n) break;
for(int i = 0; i < n; i++) scanf("%lf%lf", &e[i].x, &e[i].y);
tubao();
printf("%.4lf\n", rotate());
}
return 0;
}
UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖的更多相关文章
- LeetCode 939. Minimum Area Rectangle (最小面积矩形)
题目标签:HashMap 题目给了我们一组 xy 上的点坐标,让我们找出 能组成矩形里最小面积的那个. 首先遍历所有的点,把x 坐标当作key 存入map, 把重复的y坐标 组成set,当作value ...
- Smallest Bounding Rectangle - uva10173
Smallest Bounding Rectangle Given the Cartesian coordinates of n(>0)2-dimensional points, write a ...
- 此坑待填 离散化思想和凸包 UVA - 10173 Smallest Bounding Rectangle
Smallest Bounding Rectangle Given the Cartesian coordinates of n(>0)2-dimensional points, write a ...
- LeetCode939 最小面积矩形
LeetCode939最小面积矩形 给定在 xy 平面上的一组点,确定由这些点组成的矩形的最小面积,其中矩形的边平行于 x 轴和 y 轴. 如果没有任何矩形,就返回 0. Input [[1,1],[ ...
- [Swift]LeetCode939. 最小面积矩形 | Minimum Area Rectangle
Given a set of points in the xy-plane, determine the minimum area of a rectangle formed from these p ...
- [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- Leetcode963. Minimum Area Rectangle II最小面积矩形2
给定在 xy 平面上的一组点,确定由这些点组成的任何矩形的最小面积,其中矩形的边不一定平行于 x 轴和 y 轴. 如果没有任何矩形,就返回 0. 示例 1: 输入:[[1,2],[2,1],[1,0] ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- hdu5251最小矩形覆盖
题意(中问题直接粘吧)矩形面积 Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少. Input ...
随机推荐
- Hybrid App混合模式移动应用开发(AngularJS+Cordova+Ionic)
以前公司开发了某手机APP是通过jquerymobile来实现的,发现它对手机上的原生设备无能为力.于是在下一个项目到来之际,通过筛选最终决定使用cordova+Ionic.看起来简单,但是因为他们各 ...
- Oracle 归档开启切换和归档日志删除(单实例和RAC)
Oracle默认安装后,是没有开启归档模式的,需要手动开启. 开启归档--单实例如果archive log模式下不能正常startup,则先恢复成noarchive log,startup成功后,再s ...
- OpenCV 视频监控(Video Surveilance)的算法体系
如前面说到的,OpenCV VS提供了6组算法的接口,分别是:前景检测.新目标检测.目标跟踪.轨迹生成.跟踪后处理.轨迹分析,除了轨迹生成用于轨迹数据的保存以外,其他5个部分都是标准的视频监控算法体系 ...
- 新手编译开发OpenWrt入门教程(自定义固件、ubuntu学习)
转自: http://www.znck007.com/forum.php?mod=viewthread&tid=21571 由于openwrt编译教程资料很多,不同的cpu芯片只需要选择对 ...
- 未在本地计算机上注册 Microsoft.ACE.OLEDB.12.0 提供程序
Visual Studio 8使用了Access数据库,provider选择了ACE.OLEDB,但是运行时出现了错误,提示未在本地计算机上注册"Microsoft.ACE.OLEDB.12 ...
- 发RTX通知
安装sdk 在RTXServer目录下找到WebRoot目录,找到里面的SendNotify.cgi(就是一个php页面,默认是pc - ascii编码).打开页面,在头部加上编码信息 header( ...
- C Primer Plus学习笔记(三)- 字符串和格式化输入/输出
从一个简单的例子开始 #include <stdio.h> int main() { char name[10]; printf("Input Your Name:\n" ...
- 微信小程序基础语法总结
本文介绍微信小程序语法 配置文件 app.json的配置(全局) { // 用来配置页面的路径 "pages":[ "pages/index/index", / ...
- Ubuntu 开启telnet、ftp服务
Telnet 这里我们就来对Ubuntu Linux telnet的安装设置进行一下讲解. 1. sudo apt-get install xinetd telnetd 2. Ubuntu Linux ...
- 为什么在进行Full GC之前最好进行一次Minor GC
摘自:<Java Performance>第三章 为什么在进行Full GC之前最好进行一次Minor GC? Garbage collecting the young generatio ...