题意

已知一个长度为n的序列a1,a2,...,an。

对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j))

题解

决策单调性是个好东西

等学会了再滚回来填坑

 //minamoto
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e5+;
int n,q[N],k[N],a[N];
double p[N];
inline double calc(int i,int j){return a[j]+sqrt(i-j);}
inline int bound(int x,int y){
int l=,r=n,mid,res=r+;
while(l<=r){
mid=l+r>>;
if(calc(mid,x)<=calc(mid,y)) res=mid,r=mid-;
else l=mid+;
}
return res;
}
void work(){
for(int i=,h=,t=;i<=n;++i){
while(h<t&&k[t-]>=bound(q[t],i)) --t;
k[t]=bound(q[t],i),q[++t]=i;
while(h<t&&k[h]<=i) ++h;
cmax(p[i],calc(i,q[h]));
}
}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) a[i]=read();
work();
for(int i=;i<=n+-i;++i)
swap(a[i],a[n-i+]),swap(p[i],p[n-i+]);
work();
for(int i=n;i;--i) print(ceil(p[i])-a[i]);
Ot();
return ;
}

洛谷P3515 [POI2011]Lightning Conductor(决策单调性)的更多相关文章

  1. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  2. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  3. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  4. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  5. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  6. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  7. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  8. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

  9. 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)

    题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...

随机推荐

  1. 讯为开发板的最小LINUX系统烧写及U盘的挂载及卸载

    fdisk -c 0 fatformat mmc 0:1ext3format mmc 0:2ext3format mmc 0:3ext3format mmc 0:4 fastboot fastboot ...

  2. [Apache]架设Apache服务器

    我自己使用的是Ubuntu的操作系统, 所以我主要是记录的在ubuntu的Apache的安装和简单的配置. Apache服务器的架设: 一.命令行安装 使用下面的指令下载apache2 sudo ap ...

  3. EM算法以及推导

    EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...

  4. Spring4新的javaConfig注解

    1.@RestController spring4为了更方便的支持restfull应用的开发,新增了RestController的注解,比Controller注解多的功能就是给底下的RequestMa ...

  5. Linux 压缩文件 和解压文件

    .zip 解压:unzip FileName.zip 压缩:zip FileName.zip DirName .rar 解压:rar -x FileName.zip 压缩:rar -a FileNam ...

  6. c++ vector用法和迭代器

    1.在c++中,vector是一个十分有用的容器,下面对这个容器做一下总结. (1)头文件#include<vector>. (2)创建vector对象,vector<int> ...

  7. python取一个字符串中最多出现次数的词

    #-*- coding:utf-8 -*- #取一个字符串中最多出现次数的词 import re from collections import Counter my_str = "&quo ...

  8. C# 设置程序session过期时间

    服务器设置: 如果服务器上点击站点没有ASP这一项: 下方 角色服务 添加角色服务 安装完毕重新打开iis 点击站点 就可以看到ASP这个选项了 程序webconfig配置: <system.w ...

  9. php apc 安装

    APC简介 APC(Alternative PHP Cache)是一个PHP缓存.它在内存中存储PHP页面并且减少了硬盘的I/O.这对于性能的提升十分明显.你甚至可以在CPU使用率下降50%的情况下提 ...

  10. 使用Javascript Ajax 通信操作JSON数据 [上]

    以前只是知道json的格式而已,也做过的是从数据库获得数据然后弄成json的格式然后赋给HighCharts生成曲线,先把数据库的数据使用array()函数转换成数组,然后使用json_encode( ...