点此看题面

大致题意: 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案(国王能攻击到它周围的8个格子)。

状压\(DP\)

一看到这道题我就想到了经典的八皇后问题,但是,这道题其实可以用状压\(DP\)来做。

我们可以发现,影响该行国王摆放方法的只有上一行国王的摆放方式,因此,对于第\(i\)行,我们只需要知道第\(i-1\)行的国王的摆放方式即可。所以,我们可以用\(f[i][j]\)来记录第\(i\)行,国王摆放方式为\(j\)的方案数即可(这里将摆放方式状态压缩成一个数)。

注意要先预处理一下对于某一行的一种摆放方式是否合法且用了多少个国王。

代码

#include<bits/stdc++.h>
#define LL long long
#define N 9
using namespace std;
int n,m,could[(1<<N)+5],tot[(1<<N)+5];
LL f[N+5][N*N+5][(1<<N)+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void Start()//预处理每种摆放方案是否合法且用了几个国王
{
register int i;
for(i=0;i<(1<<n);++i)
{
could[i]=1,tot[i]=0;
for(int num=i,lst=0;num;lst=num&1,num>>=1)
{
if(num&1)//若当前一位摆放了国王
{
if(lst) could[i]=0;//若前一位摆放了国王,则此方案不合法
++tot[i];//将国王的使用数量加1
}
}
}
}
inline int check(int x,int y)
{
return !((x&y)||((x<<1)&y)||(x&(y<<1)));//比较两行的国王是否会攻击到对方
}
int main()
{
register int i,j,k,l;
read(n),read(m),Start(),f[0][0][0]=1;
for(i=1;i<=n;++i)//核心代码
for(j=0;j<(1<<n);++j)
if(could[j]&&tot[j]<=m)
for(k=tot[j];k<=m;++k)
for(l=0;l<(1<<n);++l)
if(could[l]&&check(j,l)) f[i][k][j]+=f[i-1][k-tot[j]][l];//进行转移,计算该行当前摆放方式的方案数
LL ans=0;
for(j=0;j<(1<<n);++j) ans+=f[n][m][j];//统计答案
return write(ans),0;
}

【BZOJ1087】[SCOI2005] 互不侵犯King(状压DP)的更多相关文章

  1. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  2. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  3. 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

    经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...

  4. BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP

    [题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...

  5. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  6. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  7. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

  8. [SCOI2005]互不侵犯(状压DP)

    嗝~算是状压DP的经典题了~ #\(\mathcal{\color{red}{Description}}\) 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻 ...

  9. 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)

    题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...

  10. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

随机推荐

  1. php 获取当前的访问的ip

    <?php function get_client_ip() { $ip = $_SERVER['REMOTE_ADDR']; if (isset($_SERVER['HTTP_CLIENT_I ...

  2. ES 6.1.2集群安装

    1.下载java,并设置环境变量 sudo tar -zxvf jdk-8u191-linux-x64.tar.gz -C /usr/local/ sudo vim /etc/profile 在最后添 ...

  3. [JLOI2012]树 倍增优化

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不 ...

  4. idea中使用Git对项目进行版本控制

  5. 阿里maven镜像配置

    setting.xml<mirrors> <mirror> <id>alimaven</id> <name>aliyun maven< ...

  6. 5、python数据类型之元组(tuple)

    元组 元组和列表最大的区别是元组中的元素固定,元组不能修改,所以不能对元组进行增.删.改 1.创建 tu = (11,22,33) tu = tuple(11,22,33) tu = tuple([] ...

  7. jdbc取出表名 名称

    package com.dataconnect.test.util; import java.sql.Connection; import java.sql.DatabaseMetaData; imp ...

  8. $.getScript("/Scripts/js/video.min.js");

    js内引用JS: $.getScript("/Scripts/js/video.min.js");

  9. Java集合——集合框架Map接口

    1.Map接口 public interface Map<K,V>将键映射到值的对象.一个映射不能包含重复的键:每个键最多只能映射到一个值.  2.HashMap.Hashtable.Tr ...

  10. Zookeeper启动失败:java.net.BindException: Address already in use

    错误日志如下: [hadoop@master zookeeper-3.4.5-cdh5.10.0]$ cat zookeeper.out 2018-05-15 01:29:21,036 [myid:] ...