【BZOJ1087】[SCOI2005] 互不侵犯King(状压DP)
大致题意: 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案(国王能攻击到它周围的8个格子)。
状压\(DP\)
一看到这道题我就想到了经典的八皇后问题,但是,这道题其实可以用状压\(DP\)来做。
我们可以发现,影响该行国王摆放方法的只有上一行国王的摆放方式,因此,对于第\(i\)行,我们只需要知道第\(i-1\)行的国王的摆放方式即可。所以,我们可以用\(f[i][j]\)来记录第\(i\)行,国王摆放方式为\(j\)的方案数即可(这里将摆放方式状态压缩成一个数)。
注意要先预处理一下对于某一行的一种摆放方式是否合法且用了多少个国王。
代码
#include<bits/stdc++.h>
#define LL long long
#define N 9
using namespace std;
int n,m,could[(1<<N)+5],tot[(1<<N)+5];
LL f[N+5][N*N+5][(1<<N)+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void Start()//预处理每种摆放方案是否合法且用了几个国王
{
register int i;
for(i=0;i<(1<<n);++i)
{
could[i]=1,tot[i]=0;
for(int num=i,lst=0;num;lst=num&1,num>>=1)
{
if(num&1)//若当前一位摆放了国王
{
if(lst) could[i]=0;//若前一位摆放了国王,则此方案不合法
++tot[i];//将国王的使用数量加1
}
}
}
}
inline int check(int x,int y)
{
return !((x&y)||((x<<1)&y)||(x&(y<<1)));//比较两行的国王是否会攻击到对方
}
int main()
{
register int i,j,k,l;
read(n),read(m),Start(),f[0][0][0]=1;
for(i=1;i<=n;++i)//核心代码
for(j=0;j<(1<<n);++j)
if(could[j]&&tot[j]<=m)
for(k=tot[j];k<=m;++k)
for(l=0;l<(1<<n);++l)
if(could[l]&&check(j,l)) f[i][k][j]+=f[i-1][k-tot[j]][l];//进行转移,计算该行当前摆放方式的方案数
LL ans=0;
for(j=0;j<(1<<n);++j) ans+=f[n][m][j];//统计答案
return write(ans),0;
}
【BZOJ1087】[SCOI2005] 互不侵犯King(状压DP)的更多相关文章
- [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP
经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...
- BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP
[题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...
- 互不侵犯king (状压dp)
互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...
- BZOJ-1087 互不侵犯King 状压DP+DFS预处理
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...
- bzoj1087 互不侵犯King 状压dp+bitset
题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...
- [SCOI2005]互不侵犯(状压DP)
嗝~算是状压DP的经典题了~ #\(\mathcal{\color{red}{Description}}\) 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻 ...
- 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)
题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
随机推荐
- webpack -- 多页面简单小例
有时单页面并不能满足我们的业务需求,就需要去构建多页面应用,以下为简单小例: entry:{ index:'./src/module/index/index.js', student:'./src/m ...
- angular1 表单验证demo
这是一个angular1 验证表单的小栗子: 先看代码: <div ng-controller="myController"> <form name=" ...
- nexus私服的搭建和使用
- Webpack, 现在最流行的模块打包工具.压缩打包
压缩bundle.js 1.把我们项目的代码从es6 -> es5 [babel] 参考:http://babeljs.io/docs/setup/#installation 1.1.安装包 b ...
- ACM 大神的经验加技巧(当然不是我的拉——
大神 犯错合集及需要注意的东西 1.在一个地图求最大面积的类问题中,要注意障碍结点的影响. 2.ll(),表示的是在运算后把括号内强制转化为类型ll,而(ll)表示后面的每个玩意都强制转化为类型ll. ...
- 关于Function.prototype.apply.call的一些补充
宿主对象,在javascript中有三类对象,本地对象,内置对象和宿主对象.其他两类暂且不提,宿主对象是指什么呢(DOM BOM),控制台对象是文档对象模型的扩展,也被认为是宿主对象.那么,它们有什么 ...
- SpringBoot | 第二十六章:邮件发送
前言 讲解了日志相关的知识点后.今天来点相对简单的,一般上,我们在开发一些注册功能.发送验证码或者订单服务时,都会通过短信或者邮件的方式通知消费者,注册或者订单的相关信息.而且基本上邮件的内容都是模版 ...
- Docker | 第五章:构建自定义镜像
前言 上一章节,主要是介绍了下Dockerfile的一些常用命令的说明.我们知道,利用Dockerfile可以构建一个新的镜像,比如运行Java环境,就需要一个JDK环境的镜像,但直接使用公共的镜像时 ...
- [luogu 1660]数位平方和
题目描述 定义S(n)表示n的各个数位的k次方的和.定义$H(n)=min{n,S(n),H(S(n))}$. 求$$\sum _{i=A} ^{B} {H(i)} \mod 10000007$$ 输 ...
- using System.Web.Script.Serialization
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript Programming Langu ...