Dijkstra&&Floyd
文章来源:(http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html)
(以下内容皆为转载)
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则< u,v>正常有权值,若u不是v的出边邻接点,则< u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
Floyd算法
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
Dijkstra&&Floyd的更多相关文章
- 最短路问题(Bellman/Dijkstra/Floyd)
最短路问题(Bellman/Dijkstra/Floyd) 寒假了,继续学习停滞了许久的算法.接着从图论开始看起,之前觉得超级难的最短路问题,经过两天的苦读,终于算是有所收获.把自己的理解记录下来,可 ...
- 最短路径:Dijkstra & Floyd 算法图解,c++描述
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- poj1847 Tram(Dijkstra || Floyd || SPFA)
题目链接 http://poj.org/problem?id=1847 题意 有n个车站,编号1~n,每个车站有k个出口,车站的出口默认是k个出口中的第一个,如果不想从默认出口出站,则需要手动选择出站 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- hdu 1874(Dijkstra + Floyd)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Me ...
- ACM-最短路(SPFA,Dijkstra,Floyd)之最短路——hdu2544
***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...
- 最短路径:(Dijkstra & Floyd)
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
- hdu 1874 畅通工程续(求最短距离,dijkstra,floyd)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 /************************************************* ...
- hdoj2544 最短路(Dijkstra || Floyd || SPFA)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2544 思路 最短路算法模板题,求解使用的Dijkstra算法.Floyd算法.SPFA算法可以当做求解 ...
- hdu3665-Seaside(SPFA,dijkstra,floyd)
Seaside Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
随机推荐
- [转]how can I change default errormessage for invalid price
本文转自:http://forums.asp.net/t/1598262.aspx?how+can+I+change+default+errormessage+for+invalid+price I ...
- MATLAB矩阵求值和稀疏矩阵
方阵的行列式: det(A) 矩阵线性无关的行数或列数,称为矩阵的秩. rank(A) 求3~20阶魔方矩阵的秩 for n=3:20 rank(magic(n)) end 矩阵的迹等于矩阵的对角线元 ...
- .NET控制台程序监听程序退出
There are mainly 2 types of Win32 applications, console application and window application. They hav ...
- linux工具:快速返回某级父目录--bd
当我们在linux服务器上切换父目录时,通常使用cd ../../,有几级目录就输入几次"../",如果目录嵌套的过深,就会有点晕菜...因此,本次介绍的这款工具,可以快速的返回指 ...
- C++ 虚函数、纯虚函数、虚继承
1)C++利用虚函数来实现多态. 程序执行时的多态性通过虚函数体现,实现运行时多态性的机制称爲动态绑定:与编译时的多态性(通过函数重载.运算符重载体现,称爲静态绑定)相对应. 在成员函数的声明前加上v ...
- 在CentOS上配置Tomcat服务脚本
#!/bin/bash # chkconfig: - 85 15 # description: Tomcat Server basic start/shutdown script # processn ...
- APK加固之静态脱壳机编写入门
目录: 0x00APK加固简介与静态脱壳机的编写思路 1.大家都知道Android中的程序反编译比较简单,辛苦开发出一个APK轻易被人反编译了,所以现在就有很多APK加固的第三方平台,比如爱加密和梆梆 ...
- python 修改xml文件
在百度知道里面有人问了这么一个问题: 有一个xml文件:<root>text <a/> <a/> ...这里省略n个<a/> <root>想 ...
- selenium 服务器端运行命令
cd C:\Users\kfa_wangchao\Downloadsjava -jar selenium-server-standalone-2.37.0.jarcmd=getNewBrowserSe ...
- 07、Spark集群的进程管理
07.Spark集群的进程管理 7.1 概述 Spark standalone集群模式涉及master和worker两个守护进程.master进程是管理节点,worker进程是工作节点.spark提供 ...