【bzoj2618】[Cqoi2006]凸多边形 半平面交
题目描述
则相交部分的面积为5.233。
输入
第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形。第i个多边形的第一行包含一个整数mi,表示多边形的边数,以下mi行每行两个整数,逆时针给出各个顶点的坐标。
输出
输出文件仅包含一个实数,表示相交部分的面积,保留三位小数。
样例输入
2
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0
样例输出
5.233
题解
半平面交
题意即求一堆半平面的公共部分,即半平面交。
暴力半平面交可以过,但还是学了一下双端队列求半平面交的方法:
不妨设直线的右侧为半平面,那么把所有半平面按照直线的极角从小到大排序,极角相同的仅保留限制条件最严格的,即最右侧的。
排序去重以后扫一遍所有直线,判断分别队尾交点和队头交点是否在当前直线左端,在的话就踢出双端队列。然后再把当前半平面压入双端队列队尾。
最后,队尾的交点与队首可能不满足条件,因此还要弹掉队尾不合法的部分。
求面积的话直接上叉积就可以了。
废话不多说,直接上代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define eps 1e-9
#define N 510
using namespace std;
struct point
{
double x , y;
point() {}
point(double a , double b) {x = a , y = b;}
point operator+(const point &a)const {return point(x + a.x , y + a.y);}
point operator-(const point &a)const {return point(x - a.x , y - a.y);}
point operator*(const double &a)const {return point(a * x , a * y);}
}p[N];
struct line
{
point p , v;
double ang;
}a[N] , q[N] , c[N];
inline double cross(point a , point b) {return a.x * b.y - a.y * b.x;}
inline bool left(line a , point b) {return cross(a.v , b - a.p) > eps;}
inline point inter(line a , line b)
{
point u = a.p - b.p;
double tmp = cross(b.v , u) / cross(a.v , b.v);
return a.p + a.v * tmp;
}
bool cmp(const line &a , const line &b)
{
return fabs(a.ang - b.ang) < eps ? left(a , b.p) : a.ang < b.ang;
}
int main()
{
int n , i , j , m , cnt = 0 , tot = 1 , l = 1 , r = 1;
double ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &m);
for(j = 1 ; j <= m ; j ++ ) scanf("%lf%lf" , &p[j].x , &p[j].y);
for(j = 1 ; j <= m ; j ++ ) a[++cnt].p = p[j] , a[cnt].v = p[j] - p[j % m + 1] , a[cnt].ang = atan2(a[cnt].v.y , a[cnt].v.x);
}
sort(a + 1 , a + cnt + 1 , cmp);
for(i = 2 ; i <= cnt ; i ++ )
if(fabs(a[i].ang - a[i - 1].ang) > eps)
a[++tot] = a[i];
q[1] = a[1];
for(i = 2 ; i <= tot ; i ++ )
{
while(l < r && left(a[i] , p[r - 1])) r -- ;
while(l < r && left(a[i] , p[l])) l ++ ;
q[++r] = a[i];
if(l < r) p[r - 1] = inter(q[r - 1] , q[r]);
}
while(l < r && left(q[l] , p[r - 1])) r -- ;
p[r] = inter(q[l] , q[r]) , p[r + 1] = p[l];
for(i = l ; i <= r ; i ++ ) ans += cross(p[i] , p[i + 1]);
printf("%.3lf\n" , ans / 2);
return 0;
}
【bzoj2618】[Cqoi2006]凸多边形 半平面交的更多相关文章
- BZOJ2618[Cqoi2006]凸多边形——半平面交
题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...
- bzoj2618[Cqoi2006]凸多边形 半平面交
这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...
- P4196 [CQOI2006]凸多边形 半平面交
\(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...
- luogu4196 [CQOI2006]凸多边形 半平面交
据说pkusc出了好几年半平面交了,我也来水一发 ref #include <algorithm> #include <iostream> #include <cstdi ...
- POJ3525 半平面交
题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...
- bzoj 4445 小凸想跑步 - 半平面交
题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$, ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
- bzoj 3190 赛车 半平面交
直接写的裸的半平面交,已经有点背不过模板了... 这题卡精度,要用long double ,esp设1e-20... #include<iostream> #include<cstd ...
- BZOJ 4445 [Scoi2015]小凸想跑步:半平面交
传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...
随机推荐
- 微信小程序开发踩坑与总结 -
原文链接:https://segmentfault.com/a/1190000008516296 前段时间把公司小程序项目开发完成了,所以来写写自己开发过程中碰到的问题和解决方法,以及用到的提高效率的 ...
- 【树链剖分 ODT】cf1137F. Matches Are Not a Child's Play
孔爷的杂题系列:LCT清新题/ODT模板题 题目大意 定义一颗无根树的燃烧序列为:每次选取编号最小的叶子节点形成的序列. 要求支持操作:查询一个点$u$在燃烧序列中的排名:将一个点的编号变成最大 $n ...
- Xtrabackup实现MySQL备份
一.xtrabackup介绍 Xtrabackup是一个对InnoDB做数据备份的工具,支持在线热备份(备份时不影响数据读写)它由percona提供的mysql数据库备份工具,据官方介绍,这也是世界上 ...
- hasOwnProperty自我理解
暂时不考虑ES6中symbol,hasOwnProperty()方法返回的是一个对象上是否包含一个指定属性,如果含有则返回true,如果没有则返回false. 和 in 运算符不同,该方法会忽略掉 ...
- tcl之正则表达式
- 判断移动端和pc端最简单的方法
<!DOCTYPE html><html><head> <title></title> <script type="text ...
- 笔记-python-coroutine
笔记-python-coroutine 1. 协程 1.1. 协程的概念 协程,又称微线程,纤程.英文名Coroutine.协程是一种用户态的轻量级线程. 线程是系统级别的,它们是由操 ...
- python基础之入门基础
编程语言分类 机器语言 使用二进制代码直接编程,直接与硬件交互,执行速度非常快,灵活,但是开发难度高,开发效率低下,缺乏移植性. 汇编语言 对机器语言指令进行了英文封装,较机器语言容易记忆,直接与硬件 ...
- Android面试收集录6 事件分发机制
转自:秋招面试宝典. 一. 基础认知 1.1 事件分发的对象是谁? 答:事件 当用户触摸屏幕时(View或ViewGroup派生的控件),将产生点击事件(Touch事件). Touch事件相关细节(发 ...
- jQuery的Ajax初识
1. 什么是Ajax? Ajax是“Asynchronous Javascript And XML(异步Javascript和XML)”的缩写, 是指一种创建交互式网页应用的网站开发技术. Ajax不 ...