原题

定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值。每比一个点大就为加一等级,求每个等级的点的数量。


显然的三维偏序问题,CDQ的板子题。

CDQ分治:

CDQ分治是一种特殊的分治方法,在 OI 界初见于陈丹琦 2008 年的集训队作业中,因此被称为 CDQ 分治。

CDQ分治是将操作分治,用于解决“修改独立,允许离线”的问题。本质为按时间分治。

可以用CDQ的题目必须满足:

1、修改与询问互相独立,且修改之间互不影响

2、允许离线

那么我们将操作序列分为两半。显然,后一半的操作不会对前一半产生影响,后一半的询问只受前一半操作和后一半在询问前的操作的影响。这看起来像是可以递归,因为后一半操作序列的修改操作完全不会影响前一半操作序列中的询问结果,因此前一半操作序列的查询实际是与后一半操作序列完全独立的,是与原问题完全相同的子问题,可以递归处理。

至此,一个动态修改题变为无动态修改操作的问题,设“解决无动态修改操作的原问题”的复杂度为O(f(n)),那么由主定理,我们知道这样分治的总时间复杂度将是O(f(n)logn)。

本题题解 && CDQ分治的一般思路:

1、sort处理一个维度

2、CDQ分治过程中归并一个维度

3、树状数组第三个维度计算答案

本题即为如此(树状数组维护前缀和,每次query即为答案,因为是按小到大顺序加入的)。

#include<cstdio>
#include<algorithm>
#define N 100010
#define M 200010
using namespace std;
struct hhh
{
int x,y,z,cnt,sum;
inline bool operator == (const hhh &b) const
{
return x==b.x && y==b.y && z==b.z;
}
inline bool operator < (const hhh &b) const
{
if (x!=b.x) return x<b.x;
if (y!=b.y) return y<b.y;
return z<b.z;
}
inline bool operator > (const hhh &b) const
{
if (y!=b.y) return y<b.y;
return z<=b.z;
}
}t[N],a[N];
int m,head,tail,ans[N],n,s,f[M]; int read()
{
int ans=0,fu=1;
char j=getchar();
for (;j<'0' || j>'9';j=getchar()) if (j=='-') fu=-1;
for (;j>='0' && j<='9';j=getchar()) ans*=10,ans+=j-'0';
return ans*fu;
} void init(int x)
{
while (x<=s)
{
if (f[x]) f[x]=0;
else break;
x+=x&-x;
}
} int query(int x)
{
int ans=0;
while (x)
{
ans+=f[x];
x-=x&-x;
}
return ans;
} void insert(int x,int y)
{
while (x<=s)
{
f[x]+=y;
x+=x&-x;
}
} void CDQ(int l,int r)
{
if (l==r) return ;
int mid=(l+r)>>1,idx1=l,idx2=mid+1;
CDQ(l,mid);
CDQ(mid+1,r);
for (int i=l;i<=r;i++)
{
if (idx2>r || idx1<=mid && a[idx1]>a[idx2])
{
t[i]=a[idx1++];
insert(t[i].z,t[i].cnt);
}
else
{
t[i]=a[idx2++];
t[i].sum+=query(t[i].z);
}
}
for (int i=l;i<=r;i++)
{
a[i]=t[i];
init(a[i].z);
}
} int main()
{
m=read();
s=read();
for (int i=1;i<=m;i++)
{
t[i].x=read();
t[i].y=read();
t[i].z=read();
}
sort(t+1,t+m+1);
head=1;
n=0;
while (head<=m)
{
tail=head+1;
while (tail<=m && t[tail]==t[head]) ++tail;
a[++n]=t[head];
a[n].cnt=tail-head;
head=tail;
}
CDQ(1,n);
for (int i=1;i<=n;i++)
ans[a[i].sum+a[i].cnt-1]+=a[i].cnt;
for (int i=0;i<m;i++)
printf("%d\n",ans[i]);
return 0;
}

[bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解的更多相关文章

  1. BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第 ...

  2. 【算法学习】【洛谷】cdq分治 & P3810 三维偏序

    cdq是何许人也?请参看这篇:https://wenku.baidu.com/view/3b913556fd0a79563d1e7245.html. 在这篇论文中,cdq提出了对修改/询问型问题(Mo ...

  3. 洛谷P3810 陌上花开(CDQ分治)

    洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...

  4. 洛谷P3810 陌上花开 CDQ分治(三维偏序)

    好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...

  5. BZOJ3262:陌上花开 & 洛谷3810:三维偏序——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3262 https://www.luogu.org/problemnew/show/3810 Desc ...

  6. P3810 -三维偏序(陌上花开)cdq-分治

    P3810 [模板]三维偏序(陌上花开) 思路 :按照 1维排序 二维 分治三维树状数组维护 #include<bits/stdc++.h> using namespace std; #d ...

  7. 洛谷P3810 陌上花开 (cdq)

    最近才学了cdq,所以用cdq写的代码(这道题也是cdq的模板题) 这道题是个三维偏序问题,先对第一维排序,然后去掉重复的,然后cdq分治即可. 为什么要去掉重复的呢?因为相同的元素互相之间都能贡献, ...

  8. BZOJ 2716/2648 SJY摆棋子 (三维偏序CDQ+树状数组)

    题目大意: 洛谷传送门 这明明是一道KD-Tree,CDQ分治是TLE的做法 化简式子,$|x1-x2|-|y1-y2|=(x1+y1)-(x2+y2)$ 而$CDQ$分治只能解决$x1 \leq x ...

  9. BZOJ3262陌上花开(三维偏序问题(CDQ分治+树状数组))+CDQ分治基本思想

    emmmm我能怎么说呢 CDQ分治显然我没法写一篇完整的优秀的博客,因为我自己还不是很明白... 因为这玩意的思想实在是太短了: fateice如是说道: 如果说对于一道题目的离线操作,假设有n个操作 ...

随机推荐

  1. 爱她就用python给她画个小心心 ♥(ˆ◡ˆԅ)

    from turtle import * a = Turtle() screensize(400, 300, "blue") setup(width=1300, height=65 ...

  2. Jenkins持续化集成

    Jenkins介绍 Jenkins是基于Java开发的一种持续集成工具,用于监控持续重复的工作,功能包括: 1.持续的软件版本发布/测试项目. 2.监控外部调用执行的工作. 安装环境 操作系统:lin ...

  3. Lo、Hi、HiByte、LoWord、HiWord、MakeWord、MakeLong、Int64Rec

    本话题会涉及到: Lo.Hi.HiByte.LoWord.HiWord.MakeWord.MakeLong.Int64Rec 譬如有一个 Cardinal 类型的整数: 1144201745其十六进制 ...

  4. ERROR 1005 (HY000): Can't create table 'students.#sql-d9

    今天在创建外键的时候出现以下错误        ERROR 1005 (HY000): Can't create table 'students.#sql-d99_3' (errno: 150) 格式 ...

  5. Pandas 文本数据

    Pandas针对字符串配备的一套方法,使其易于对数组的每个元素(字符串)进行操作. 1.通过str访问,且自动排除丢失/ NA值 # 通过str访问,且自动排除丢失/ NA值 s = pd.Serie ...

  6. 中国剩余定理算法详解 + POJ 1006 Biorhythms 生理周期

    转载请注明出处:http://exp-blog.com/2018/06/24/pid-1054/ #include <iostream> #include <cstdio> u ...

  7. contextmanager 的基本使用

    from contextlib import contextmanager 简化 With 语句: class MyResource:    def query(self):        print ...

  8. python正则表达式02--findall()和search()方法区别,group()方法

    import re st = 'asxxixxsaefxxlovexxsdwdxxyouxxde' #search()和 findall()的区别 a = re.search('xx(.*?)xxsa ...

  9. Android 数据库中的数据给到ListView

    前言:因为之前学的都是用一个自己定义的类,完成将某一个bean中的数据直接获取,而实际中通常是通过数据库来得到的,总之,最终就是要得到数据.提一下最重要的东西,我把它叫做代理,如同一个校园代理,没有他 ...

  10. Activiti入门 -- 轻松解读数据库

    相关文章: <史上最权威的Activiti框架学习指南> <Activiti入门 --环境搭建和核心API简介> 在Activiti中,相对前身JBPM基础上又额外多了5张,框 ...