原文出自:http://www.cnblogs.com/forfuture1978/archive/2010/03/07/1680007.html

在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下。因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数。

Lucene的打分公式非常复杂,如下:

在推导之前,先逐个介绍每部分的意义:

  • t:Term,这里的Term是指包含域信息的Term,也即title:hello和content:hello是不同的Term
  • coord(q,d):一次搜索可能包含多个搜索词,而一篇文档中也可能包含多个搜索词,此项表示,当一篇文档中包含的搜索词越多,则此文档则打分越高。
  • queryNorm(q):计算每个查询条目的方差和,此值并不影响排序,而仅仅使得不同的query之间的分数可以比较。其公式如下:

  • tf(t in d):Term t在文档d中出现的词频
  • idf(t):Term t在几篇文档中出现过(原作者有错,纠正如下:idf为逆文档频率,idf= N(总文档数)/含有t的文档数),idf越大一般说明是公用词语,idf值越小说明是领域词,一般来说更有意义。
  • norm(t, d):标准化因子,它包括三个参数:
    • Document boost:此值越大,说明此文档越重要。
    • Field boost:此域越大,说明此域越重要。
    • lengthNorm(field) = (1.0 / Math.sqrt(numTerms)):一个域中包含的Term总数越多,也即文档越长,此值越小,文档越短,此值越大。

  • 各类Boost值

    • t.getBoost():查询语句中每个词的权重,可以在查询中设定某个词更加重要,common^4 hello
    • d.getBoost():文档权重,在索引阶段写入nrm文件,表明某些文档比其他文档更重要。
    • f.getBoost():域的权重,在索引阶段写入nrm文件,表明某些域比其他的域更重要。

以上在Lucene的文档中已经详细提到,并在很多文章中也被阐述过,如何调整上面的各部分,以影响文档的打分,请参考有关Lucene的问题(4):影响Lucene对文档打分的四种方式一文。

然而上面各部分为什么要这样计算在一起呢?这么复杂的公式是怎么得出来的呢?下面我们来推导。

首先,将以上各部分代入score(q, d)公式,将得到一个非常复杂的公式,让我们忽略所有的boost,因为这些属于人为的调整,也省略coord,这和公式所要表达的原理无关。得到下面的公式:

然后,有Lucene学习总结之一:全文检索的基本原理中的描述我们知道,Lucene的打分机制是采用向量空间模型的:

我们把文档看作一系列词(Term),每一个词(Term)都有一个权重(Term weight),不同的词(Term)根据自己在文档中的权重来影响文档相关性的打分计算。

于是我们把所有此文档中词(term)的权重(term weight) 看作一个向量。

Document = {term1, term2, …… ,term N}

Document Vector = {weight1, weight2, …… ,weight N}

同样我们把查询语句看作一个简单的文档,也用向量来表示。

Query = {term1, term 2, …… , term N}

Query Vector = {weight1, weight2, …… , weight N}

我们把所有搜索出的文档向量及查询向量放到一个N维空间中,每个词(term)是一维。

我们认为两个向量之间的夹角越小,相关性越大。

所以我们计算夹角的余弦值作为相关性的打分,夹角越小,余弦值越大,打分越高,相关性越大。

余弦公式如下:

下面我们假设:

查询向量为Vq = <w(t1, q), w(t2, q), ……, w(tn, q)>

文档向量为Vd = <w(t1, d), w(t2, d), ……, w(tn, d)>

向量空间维数为n,是查询语句和文档的并集的长度,当某个Term不在查询语句中出现的时候,w(t, q)为零,当某个Term不在文档中出现的时候,w(t, d)为零。

w代表weight,计算公式一般为tf*idf。

我们首先计算余弦公式的分子部分,也即两个向量的点积:

Vq*Vd = w(t1, q)*w(t1, d) + w(t2, q)*w(t2, d) + …… + w(tn ,q)*w(tn, d)

把w的公式代入,则为

Vq*Vd = tf(t1, q)*idf(t1, q)*tf(t1, d)*idf(t1, d) + tf(t2, q)*idf(t2, q)*tf(t2, d)*idf(t2, d) + …… + tf(tn ,q)*idf(tn, q)*tf(tn, d)*idf(tn, d)

在这里有三点需要指出:

  • 由于是点积,则此处的t1, t2, ……, tn只有查询语句和文档的并集有非零值,只在查询语句出现的或只在文档中出现的Term的项的值为零。
  • 在查询的时候,很少有人会在查询语句中输入同样的词,因而可以假设tf(t, q)都为1
  • idf是指Term在多少篇文档中出现过,其中也包括查询语句这篇小文档,因而idf(t, q)和idf(t, d)其实是一样的,是索引中的文档总数加一,当索引中的文档总数足够大的时候,查询语句这篇小文档可以忽略,因而可以假设idf(t, q) = idf(t, d) = idf(t)

基于上述三点,点积公式为:

Vq*Vd = tf(t1, d) * idf(t1) * idf(t1) + tf(t2, d) * idf(t2) * idf(t2) + …… + tf(tn, d) * idf(tn) * idf(tn)

所以余弦公式变为:

下面要推导的就是查询语句的长度了。

由上面的讨论,查询语句中tf都为1,idf都忽略查询语句这篇小文档,得到如下公式

所以余弦公式变为:

下面推导的就是文档的长度了,本来文档长度的公式应该如下:

这里需要讨论的是,为什么在打分过程中,需要除以文档的长度呢?

因为在索引中,不同的文档长度不一样,很显然,对于任意一个term,在长的文档中的tf要大的多,因而分数也越高,这样对小的文档不公平,举一个极端的例子,在一篇1000万个词的鸿篇巨著中,"lucene"这个词出现了11次,而在一篇12个词的短小文档中,"lucene"这个词出现了10次,如果不考虑长度在内,当然鸿篇巨著应该分数更高,然而显然这篇小文档才是真正关注"lucene"的。

然而如果按照标准的余弦计算公式,完全消除文档长度的影响,则又对长文档不公平(毕竟它是包含了更多的信息),偏向于首先返回短小的文档的,这样在实际应用中使得搜索结果很难看。

所以在Lucene中,Similarity的lengthNorm接口是开放出来,用户可以根据自己应用的需要,改写lengthNorm的计算公式。比如我想做一个经济学论文的搜索系统,经过一定时间的调研,发现大多数的经济学论文的长度在8000到10000词,因而lengthNorm的公式应该是一个倒抛物线型的,8000到 10000词的论文分数最高,更短或更长的分数都应该偏低,方能够返回给用户最好的数据。

在默认状况下,Lucene采用DefaultSimilarity,认为在计算文档的向量长度的时候,每个Term的权重就不再考虑在内了,而是全部为一。

而从Term的定义我们可以知道,Term是包含域信息的,也即title:hello和content:hello是不同的Term,也即一个Term只可能在文档中的一个域中出现。

所以文档长度的公式为:

代入余弦公式:

再加上各种boost和coord,则可得出Lucene的打分计算公式。

Lucene打分公式的数学推导的更多相关文章

  1. Lucene学习总结之六:Lucene打分公式的数学推导

    在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene ...

  2. Lucene学习总结之六:Lucene打分公式的数学推导 2014-06-25 14:20 384人阅读 评论(0) 收藏

    在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene ...

  3. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

  4. Lucene打分规则与Similarity模块详解

    搜索排序结果的控制 Lucnen作为搜索引擎中,应用最为广泛和成功的开源框架,它对搜索结果的排序,有一套十分完整的机制来控制:但我们控制搜索结果排序的目的永远只有一个,那就是信息过滤,让用户快速,准确 ...

  5. [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂

    从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...

  6. 『sumdiv 数学推导 分治』

    sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...

  7. [hdu5307] He is Flying [FFT+数学推导]

    题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...

  8. 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5

    上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...

  9. UVA - 10014 - Simple calculations (经典的数学推导题!!)

    UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...

随机推荐

  1. Python爬虫之利用BeautifulSoup爬取豆瓣小说(一)——设置代理IP

    自己写了一个爬虫爬取豆瓣小说,后来为了应对请求不到数据,增加了请求的头部信息headers,为了应对豆瓣服务器的反爬虫机制:防止请求频率过快而造成“403 forbidden”,乃至封禁本机ip的情况 ...

  2. 《Advanced Bash-scripting Guide》学习(十九):两个整数的最大公约数

    本文所选的例子来自于<Advanced Bash-scripting Gudie>一书,译者 杨春敏 黄毅 #!/bin/bash #求两个整数的最大公约数 E_BADARGS= #如果参 ...

  3. 用系统工具sxstrace检查缺少的VC运行时组件

    在管理员运行的命令提示符中输入sxstrace获得如下帮助: C:\>sxstrace WinSxs Tracing Utility. Usage: SxsTrace [Options] Opt ...

  4. jspm

    1.简介 JavaScript 模块的写法有几种,比如 AMD,CommonJS .. 还有标准化的 ES6 的写法 .. jspm 支持加载所有的用这些方法写的 JavaScript 模块 在你的应 ...

  5. c++primer 第五章编程练习答案

    5.9.1 #include<iostream> int main() { using namespace std; ; cout << "input first i ...

  6. 转载:Java就业企业面试问题-电商项目

    转载: http://blog.csdn.net/qq_33448669/article/details/73657642

  7. 如何打开 Windows 的热键提示

    如何打开 Windows 的热键提示 很早之前我记的 Windows 是有热键提示的,不知道什么时候开始默认不显示了,难道 微软是为是美观? 找了一下原来是有地方可以设置的.

  8. [转]express 路由控制--next

    next() express的路由控制有个next()功能,在定义了多个路由的时候,对匹配的url会按顺序执行, 例如,有这样两个路由,第一个路由会对满足“/”的地址,在req中添加一个user的属性 ...

  9. FPGA的年龄

    FPGA的年龄 1984年,Xilinx公司发布了第一个FPGA(但直到1985年这些器件才真正发货).尽管这些器件比当时那些简单的可编程逻辑器件(PLD)复杂的多,但大多数数字设计工程师却仅仅用这些 ...

  10. NB-LOT 科普

    最全科普!你一定要了解的NB-IoT 2017-06-19 21:04物联网/操作系统/科普 工信部下发通知推动150万NB-IoT基站落地.NB-IoT汹涌而来.很多网友要求雇佣军科普一篇NB-Io ...