题目链接:POJ 1265

Problem Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.



Figure 1: Example area.

You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.

Input

The first line contains the number of scenarios.

For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.

Output

The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0

Source

Northwestern Europe 2001

Solution

题意

给定一个多边形,所有点都在格点上,求多边形内部的点,边上的点和多边形的面积。

思路

Pick定理

Pick 定理:多边形面积 \(A\) 和内部格点数目 \(i\),边上格点数目 \(b\) 的关系为 \(A = i + \frac{b}{2} - 1\) 。

相关证明见 Pick's theorem

多边形面积:按顺序求相邻两点与原点组成的向量的向量的叉积之和。

多边形边上的点:若一条边的两个点都在格点上,则该边上的格点数为 \(gcd(dx, dy)\),\(dx\) 和 \(dy\) 分别为线段横向占的点数和纵向占的点数。

Code

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10; inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
}; Point p[110]; int gcd(int a, int b) {
return b == 0? a: gcd(b, a % b);
} int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
int n;
scanf("%d", &n);
int on = 0;
db s = 0;
for(int i = 1; i <= n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
p[i] = p[i - 1] + Point(x, y);
on += gcd(abs(x), abs(y));
s += (p[i - 1]).cross(p[i]);
}
s *= 0.5;
int in = (int)s - on / 2 + 1;
printf("Scenario #%d:\n", _);
printf("%d %d %.1lf\n\n", in, on, s);
}
return 0;
}

POJ 1265 Area (Pick定理 & 多边形面积)的更多相关文章

  1. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  2. POJ1265——Area(Pick定理+多边形面积)

    Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...

  3. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  4. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

  5. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  6. Area - POJ 1265(pick定理求格点数+求多边形面积)

    题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...

  7. poj 1265 Area 面积+多边形内点数

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5861   Accepted: 2612 Description ...

  8. POJ 1265 Area (pick定理)

    题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...

  9. pick定理:面积=内部整数点数+边上整数点数/2-1

    //pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...

随机推荐

  1. python四种方法实现去除列表中的重复元素

    转载:https://blog.csdn.net/together_cz/article/details/76201975 def func1(one_list): ''''' 使用集合,个人最常用 ...

  2. HTML5: HTML5 测验

    ylbtech-HTML5: HTML5 测验 1.返回顶部 1. HTML5 测验 结果:15/5 1. HTML5 之前的 HTML 版本是什么? 你的回答: HTML 4.01 回答正确! 2. ...

  3. quartz的初步总结及配置优化

    1.scheduler 1. Scheduler就是Quartz的大脑,所有任务都是由它来设施.Scheduler包含一个两个重要组件: JobStore和ThreadPool.JobStore是会来 ...

  4. jsp中jstl、el使用

    tomcat7.0+JSTL1.1.2(不冲突) EL表达式获取变量 ${表达式} 如:${user.name} 不可以动态取值 ${user[name]}可以动态取值,变量名中含有特殊字符时只能用此 ...

  5. spring MVC 返回值信息和ResponseBody的响应json数据

    spring mvc的界面返回: 如果我们定义的返回类型是String 那么我们返回的时候直接写入 我们的界面的名字就可以了  springmvc会自动去找到我们的界面,如果是void类型的返回那么 ...

  6. Python错误 importModuleNotFoundError: No module named 'Crypto'

    0x00经过 今天在python中导入模块的用     from Crypto.Cipher import AES 的时候出现了找不到模块的错误. 百度了很长时间有很多解决方法,但是因不同的环境不同的 ...

  7. MVC路由解析---UrlRoutingModule

    文章引导 MVC路由解析---IgnoreRoute MVC路由解析---MapRoute MVC路由解析---UrlRoutingModule Area的使用 引言: 此文全文内容90%转自 一.前 ...

  8. eclipse中选取一列快捷键

    eclipse中选取一列 比如选中下面的1 4 1   2   3 4   5   6 快捷键 alt+shift+拖动鼠标

  9. 运维 04 Shell基础命令(二)

    Shell基础命令(二)   查看Linux的发行版 cat /etc/redhat-release cat /etc/os-release 查看系统用户的id信息 id 用户名 id root id ...

  10. tushare积分怎么获得 tushare pro 积分充值 积分转让

    本人是做量化投资的,团队转型,换了交易策略,手头有多个离职同事的闲置转让.600分:原价50元,仅需39元1500分:原价150元,仅需109元(售罄)2000分:原价200元,仅需149元5000分 ...