BZOJ3745 / SP22343 NORMA2 - Norma 分治,CDQ分治
要命的题目。
写法:分类讨论进行计算。
枚举过每一个\(mid\)的所有区间。对于左端点\(i∈[l, mid - 1]\),向左推并计算\([l,mid]\)范围内的最大\(/\)最小值。
然后右端点\(p\)分三种类型考虑。
\(p∈[mid + 1, p1 - 1]\),其中\(p1\)是第一次出现比\(maxw\)大或者比\(minw\)小的数的位置。
\(p∈[p1, p2 - 1]\),其中\(p2\)是第二次出现比\(maxw\)大或者比\(minw\)小的数的位置。
\(p∈[p2, r]\),\(r\)是当前枚举区间的右端点。
其中情况一高斯求和,情况二和情况三可以化为前缀最大最小值之和\(/\)积带几个系数的形式\(O(N)\)维护。
要命原因:取膜。
两年\(OI\)一场空,_______。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 500000 + 5;
const LL Mod = 1000000000;
#define min(x,y) (x < y ? x : y)
#define max(x,y) (x > y ? x : y)
#define mul(x,y) ((1ll * (x % Mod) * (y % Mod)) % Mod)
#define add(x,y) ((0ll + (x % Mod) + (y % Mod)) % Mod)
int n, arr[N]; LL ans;
int _maxw[N], _minw[N];
LL mn1[N], mn2[N], mx1[N], mx2[N], mnmx1[N], mnmx2[N];
int get_maxp (int w, int l, int r) {
if (_maxw[r] <= w) return r + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (_maxw[mid] > w) {
r = mid;
} else {
l = mid + 1;
}
}
return r;
}
int get_minp (int w, int l, int r) {
if (_minw[r] >= w) return r + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (_minw[mid] < w) {
r = mid;
} else {
l = mid + 1;
}
}
return r;
}
void cdq (int l, int r) {
if (l == r) {
ans = add (ans, mul (arr[l], arr[r]));
return;
}
int mid = (l + r) >> 1;
cdq (l, mid + 0);
cdq (mid + 1, r);
int maxw = arr[mid], minw = arr[mid];
mx1[mid - 1] = mx2[mid - 1] = 0;
mn1[mid - 1] = mn2[mid - 1] = 0;
mnmx1[mid - 1] = mnmx2[mid - 1] = 0;
_maxw[mid] = _minw[mid] = arr[mid];
for (int i = mid + 1; i <= r; ++i) {
_maxw[i] = max (_maxw[i - 1], arr[i]);
_minw[i] = min (_minw[i - 1], arr[i]);
}
for (int p = mid; p <= r; ++p) {
mx1[p] = add (mx1[p - 1], mul (_maxw[p], (p + 1)));
mx2[p] = add (mx2[p - 1], _maxw[p]);
mn1[p] = add (mn1[p - 1], mul (_minw[p], (p + 1)));
mn2[p] = add (mn2[p - 1], _minw[p]);
mnmx1[p] = add (mnmx1[p - 1], mul (_maxw[p], mul (_minw[p], (p + 1))));
mnmx2[p] = add (mnmx2[p - 1], mul (_maxw[p], _minw[p]));
}
for (int i = mid; i >= l; --i) {
maxw = max (maxw, arr[i]);
minw = min (minw, arr[i]);
int p1 = get_maxp (maxw, mid + 1, r); // [mid + 1, r]内第一个比maxw大的地方
int p2 = get_minp (minw, mid + 1, r); // [mid + 1, r]内第一个比minw小的地方
if (p1 > p2) swap (p1, p2); // 不关注大小,主要看划分
// cout << p1 << " " << p2 << endl;
ans = add (ans, mul (1ll * (p1 - mid - 1) * (p1 + mid - i * 2 + 2) / 2, mul (minw, maxw))); // Part 1
if (arr[p1] > maxw) {
ans = add (ans, mul (minw, add (add (mx1[p2 - 1], -mx1[p1 - 1]), -mul (i, add (mx2[p2 - 1], -mx2[p1 - 1])))));
} else {
ans = add (ans, mul (maxw, add (add (mn1[p2 - 1], -mn1[p1 - 1]), -mul (i, add (mn2[p2 - 1], -mn2[p1 - 1])))));
}
if (p2 <= r) {
ans = add (ans, add (add (mnmx1[r], -mnmx1[p2 - 1]), -mul (i, add (mnmx2[r], -mnmx2[p2 - 1]))));
}
}
}
signed main () {
// freopen ("data.in", "r", stdin);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> arr[i];
}
cdq (1, n);
// cout << ans << endl;
cout << (((ans % Mod) + Mod) % Mod) << endl;;
}
BZOJ3745 / SP22343 NORMA2 - Norma 分治,CDQ分治的更多相关文章
- 【BZOJ3745】Norma(CDQ分治)
[BZOJ3745]Norma(CDQ分治) 题面 BZOJ 洛谷 题解 这种问题直接做不好做,显然需要一定的优化.考虑\(CDQ\)分治. 现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答 ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
- UOJ #7 NOI2014购票(点分治+cdq分治+斜率优化+动态规划)
重写一遍很久以前写过的题. 考虑链上的问题.容易想到设f[i]为i到1的最少购票费用,转移有f[i]=min{f[j]+(dep[i]-dep[j])*p[i]+q[i]} (dep[i]-dep[j ...
- 点分治&cdq分治 总结
游荡的孤高灵魂不需要羁绊之处. 洛谷题单 点分治 前置芝士 树的重心 树分治 例题略解 P3806 [模板]点分治1 板子题,先暴力找到整棵树的重心,然后先求出重心到各点的距离,进而算出他所在树的各个 ...
- 洛谷SP22343 NORMA2 - Norma(分治,前缀和)
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...
- [BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治
3672: [Noi2014]购票 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1749 Solved: 885[Submit][Status][ ...
- 【BZOJ4237】稻草人(CDQ分治,单调栈)
[BZOJ4237]稻草人(CDQ分治,单调栈) 题面 BZOJ 题解 \(CDQ\)分治好题呀 假设固定一个左下角的点 那么,我们可以找到的右下角长什么样子??? 发现什么? 在右侧是一个单调递减的 ...
- 一篇自己都看不懂的CDQ分治&整体二分学习笔记
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作 ...
- 浅谈CDQ分治与偏序问题
初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...
随机推荐
- linux(centOS7)的基本操作(三) 用户、组、权限管理
用户和组 1.用户.组.家目录的概念 linux系统支持多用户,除了管理员,其他用户一般不应该使用root,而是应该向管理员申请一个账号.组类似于角色,系统可以通过组对有共性的用户进行统一管理.每个用 ...
- easyui tree checkbox 单选控制
参考文档:中文网:http://www.jeasyui.net/plugins/185.html easyui-tree的checkbox默认是多选的, 如何控制只能单选一个子节点,看代码: $('# ...
- swiper 的左右箭头放到轮播外面
<!-- 增加一个father的包裹 --> <div class="swiper-father"> <div class="swiper- ...
- JavaScript 积累
1. 基本类型值在内存中占据固定大小的空间,因此被保存在栈空间中: 2. 引用类型的值是对象,保存在堆空间中: 3. 从一个变量向另一个变量复制基本类型的值,会创建这个值的一个副本:从一个变量向另一个 ...
- 自己实现一个list比较器 实现Comparator()接口
一:一个实体类 成员变量有名字,年龄,分数 )))))); List<User> list = new ArrayList<>(); list.add(user1); list ...
- centos7.5 安装python3.7
一,官网下载最新版python安装包 二,解压并编译安装 ,解决依赖关系 yum -y install epel-release libffi-devel zlib* ,解压编译 .tgz cd Py ...
- c++ 数据抽象 、封装 接口(抽象类)
一.数据抽象 即,只向外界提供关键信息,并隐藏其后台的实现细节 ———— 一种依赖于接口和实现分离的编程(设计)技术 例如,程序可以调用 sort() 函数,而不需要知道函数中排序数据所用到的算法 c ...
- mariadb数据库——关联、视图、事务、索引、外键
1.关联 1)连接查询(内关联) inner join ... on 两个表连接查询 select * from students inner join classes 查询能够对应班级的学生以及班级 ...
- 平衡树(fhq无旋treap)
fhq板子(代码正确且风格易懂) 洛谷P3369 #include<iostream> #include<cstring> #include<cstdio> #in ...
- 插座-网络问题-ESP8266
//ATK-ESP8266模块测试主函数,检查WIFI模块是否在线 void atk_8266_test(void) { ))//检查WIFI模块是否在线 { atk_8266_quit_trans( ...