题目大意:给定两个序列 A、B,现可以将 A 序列的每一个元素的值增加或减少 C,求 \(\sum\limits_{i=0}^{n-1}(a_i-b_{i+k})^2\) 的最小值是多少。

题解:先不考虑环的问题,仅考虑 A 序列所有元素增加一个值 C,这将体现在最后的求和式中,即:求和式变成 $$\sum\limits_{i=0}{n-1}(a_i-b_{i+k}+c)2$$,将这个和式进行展开,可以发现这是一个关于 C 的二次函数,最值可以直接计算。于是问题转化成了如何求$$\sum\limits_{i=0}^{n-1}a_ib_{i+k}$$的最小值。上述形式的卷积被称作循环卷积,即:b 的下标取值范围为 \([0,2n-1]\),同时下标之差是定值,将 B 倍增之后,翻转 A 即可得到卷积的形式,最后取对应系数的最大值即可。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef complex<double> cp;
const double pi = acos(-1); int main() {
int n, m;
scanf("%d %d", &n, &m);
vector<double> x(n), y(n);
double ans = 0, delta = 0;
for (int i = 0; i < n; i++) {
scanf("%lf", &x[i]);
ans += x[i] * x[i];
}
for (int i = 0; i < n; i++) {
scanf("%lf", &y[i]);
ans += y[i] * y[i];
delta += y[i] - x[i];
}
double optimal = round(delta / n);
ans += n * optimal * optimal - 2 * delta * optimal; int tot = 1, bit = 0;
while (tot <= 3 * n) {
tot <<= 1;
++bit;
}
vector<int> rev(tot);
for (int i = 0; i < tot; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1;
}
vector<cp> f(tot), g(tot);
for (int i = 0; i < n; i++) {
f[i] = x[n - i - 1];
}
for (int i = 0; i < n; i++) {
g[i] = g[i + n] = y[i];
}
auto fft = [=](vector<cp> &v, int opt) {
for (int i = 0; i < tot; i++) {
if (i < rev[i]) {
swap(v[i], v[rev[i]]);
}
}
for (int mid = 1; mid < tot; mid <<= 1) {
cp wn(cos(pi / mid), opt * sin(pi / mid));
for (int j = 0; j < tot; j += mid << 1) {
cp w(1, 0);
for (int k = 0; k < mid; k++) {
cp xx = v[j + k], yy = w * v[j + mid + k];
v[j + k] = xx + yy, v[j + mid + k] = xx - yy;
w *= wn;
}
}
}
if (opt == -1) {
for (int i = 0; i < tot; i++) {
v[i].real(round(v[i].real() / tot));
}
}
};
fft(f, 1), fft(g, 1);
for (int i = 0; i < tot; i++) {
f[i] *= g[i];
}
fft(f, -1);
double minus = 0;
for (int i = 0; i < n; i++) {
minus = max(minus, f[n + i - 1].real());
}
ans -= 2 * minus;
printf("%.0lf\n", ans);
return 0;
}

【洛谷P3723】礼物的更多相关文章

  1. 洛谷 [P3723] 礼物

    FFT https://www.luogu.org/problemnew/solution/P3723 重点在于构造卷积的形式 #include <iostream> #include & ...

  2. 洛谷P3723 礼物

    以前看到过,但是搞不倒.知道了算法之后就好搞了. 题意:给定两个长为n的序列,你可以把某个序列全部加上某个数c,变成循环同构序列. 求你操作后的min∑(ai - bi)² 解: 设加上的数为c,那么 ...

  3. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  4. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  5. 洛谷P3723 [AH2017/HNOI2017]礼物

    吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...

  6. [bzoj4827] [洛谷P3723] [Hnoi2017] 礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是 ...

  7. 洛谷 P1194 买礼物

    洛谷 P1194 买礼物 题目描述 又到了一年一度的明明生日了,明明想要买B样东西,巧的是,这B样东西价格都是A元. 但是,商店老板说最近有促销活动,也就是: 如果你买了第II样东西,再买第J样,那么 ...

  8. 洛谷P5364 [SNOI2017]礼物 题解

    传送门 /* 热情好客的小猴子请森林中的朋友们吃饭,他的朋友被编号为 1∼N,每个到来的朋友都会带给他一些礼物:大香蕉.其中,第一个朋友会带给他 11 个大香蕉,之后,每一个朋友到来以后,都会带给他之 ...

  9. 【洛谷 P4934】 礼物 (位运算+DP)

    题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...

随机推荐

  1. 阶段3 2.Spring_03.Spring的 IOC 和 DI_7 spring中bean的细节之作用范围

    bean的作用范围调整. 我们的bean通常情况下都是一个单例的模式 Spring是否也知道这些都是单例 构造函数只走了一次.也就是spring这个对象默认情况就是单例的 scope属性 定义bean ...

  2. Professional JavaScript for Web Developers P226

    我是这么理解的: (object.getName = object.getName),这条语句在执行结束后,返回的是右操作数object.getName: 但是关键是这个右操作数现在放在哪里 ?  我 ...

  3. js中的break,continue和return的用法及区别

    为什么要说个?好像很简单,但是我也会迷糊,不懂有时候为什么要用return,然而break和continue也经常和他放在一起. 所以就一起来说一说,这三个看起来很简单,却常常会出错的关键词的具体用法 ...

  4. sklearn.preprocessing.StandardScaler数据标准化

    原文链接:https://blog.csdn.net/weixin_39175124/article/details/79463993 数据在前处理的时候,经常会涉及到数据标准化.将现有的数据通过某种 ...

  5. ef Migration 的一些基础命令

    cmd ci 命令 dotnet ef migrations add NewColum --新增migrations dotnet ef database update--跟新数据库 dotnet e ...

  6. mysql标准规范

    一.基础规范 表存储引擎必须使用InnoDB 表字符集默认使用utf8,必要时候使用utf8mb4 解读: (1)通用,无乱码风险,汉字3字节,英文1字节 (2)utf8mb4是utf8的超集,有存储 ...

  7. spring boot-13.数据访问

    1.spring boot 的自动配置提供的方便快捷的数据库操作服务,只需要进行少量配置即可连接数据库.spring boot 在org.springframework.boot.autoconfig ...

  8. 【6.10校内test】 noip模拟

    题目链接: p1  FBI树 p2  医院设置 p3  加分二叉树 | | | | | | 分 界 线 | | | | | | 应该算是一篇反思博. 对于OI,我真的算不上是热爱(当然不热爱不代表就不 ...

  9. Python自学

    print("\u4e2d\u56fd\") 报错,语法错误 修改,去掉尾部的\,正确 import datetimeprint("now:"+datetime ...

  10. CS起源:实现狙击子弹加速

    在前面的课程 FPS 游戏实现方框透视 中我们实现了对CS中游戏人物的透视效果,今天我们就来研究下狙击枪如何变成机关枪!原理很简单,直接去掉枪的上膛动画,配合无线子弹就完事了,这里只提供一种分析思路. ...