神经网络在命名实体识别中的应用

所有的这些包括之前的两篇都可以通过tensorflow 模型的托管部署到 google cloud 上面,发布成restful接口,从而与任何的ERP,CRM系统集成、

天呀,这就是赤果果的钱呀。好血腥。感觉tensorflow的革命性意义就是能够将学校学到的各种数学算法成功地与各种系统结合起来。

实现了matlab一直不能与其他系统结合的功能,并且提供GPU并行计算的功能,简直屌爆了

理论上来讲像啥 运输问题,规划问题,极值问题。都可以通过tensorflow来进行解决,最主要的是能成功地与其他系统进行结合

练习反向传播算法和训练深度神经网络,通过它们来实现命名实体识别 (人名,地名,机构名,专有名词)

模型是一个单隐藏层神经网络,有一个类似在word2vec中看到的表现层,这里不需要求平均值,或者抽样,

而是明确地将上下文定义为一个“窗口”。包含目标词和它左右紧邻的词,是一个3d维度的行向量

xt-1,xt,xt+1是one-hot行向量,

是嵌入矩阵

每一行Li其实就代表一个特定的词,然后做如下预测

定义的交叉熵损失函数:

下面初始化各变量的值(Random initialize)然后求损失函数对各个需要更新变量的导数(梯度)

用来进行梯度下降寻找最优解

(1)训练的过程就是先在上一篇文章中训练出词向量,

(2)然后对于每一个词构造成三元组的形式

(3)然后初始化下面公式中所有需要随机生成的变量

  

  

(4)然后根据上面的每个变量的梯度公式,求出每个变量的梯度值

(5)然后应用梯度下降方法,  新变量值=初始值+步长*梯度值  来更新每一个变量的值

(6)将新的变量代入到上面的公式中,如果交叉熵损失小于固定值则停止学习,否则继续学习

(7)对于每一个词的向量应用上面的迭代方法,直至训练完毕,便得到了命名实体识别的神经网络模型

这里边这个网络的结构如下图所示:

'''
Created on 2017年9月22日 @author: weizhen
'''
import os
import getpass
import sys
import time
import struct import numpy as np
import tensorflow as tf
from q2_initialization import xavier_weight_init
import data_utils.utils as du
import data_utils.ner as ner
from utils import data_iterator
from model import LanguageModel class Config(object):
"""
配置模型的超参数和数据信息
这个配置类是用来存储超参数和数据信息,模型对象被传进Config() 实例对象在初始化的时候
"""
embed_size = 50
batch_size = 64
label_size = 5
hidden_size = 100
max_epochs = 50
early_stopping = 2
dropout = 0.9
lr = 0.001
l2 = 0.001
window_size = 3 class NERModel(LanguageModel):
"""
Implements a NER (Named Entity Recognition) model.
实现命名实体识别的模型
这个类实现了一个深度的神经网络用来进行命名实体识别
它继承自LanguageModel 一个有着add_embedding 方法,除了标准的模型方法
"""
def load_data(self, debug=False):
"""
加载开始的word-vectors 并且开始训练 train/dev/test data
"""
# Load the starter word vectors
self.wv, word_to_num, num_to_word = ner.load_wv('data/ner/vocab.txt', 'data/ner/wordVectors.txt')
tagnames = ['O', 'LOC', 'MISC', 'ORG', 'PER']
self.num_to_tag = dict(enumerate(tagnames))
tag_to_num = {v:k for k, v in self.num_to_tag.items()} # Load the training set
docs = du.load_dataset("data/ner/train")
self.X_train, self.y_train = du.docs_to_windows(docs, word_to_num, tag_to_num, wsize=self.config.window_size)
if debug:
self.X_train = self.X_train[:1024]
self.y_train = self.y_train[:1024] # Load the dev set (for tuning hyperparameters)
docs = du.load_dataset('data/ner/dev')
self.X_dev, self.y_dev = du.docs_to_windows(docs, word_to_num, tag_to_num, wsize=self.config.window_size)
if debug:
self.X_dev = self.X_dev[:1024]
self.y_dev = self.y_dev[:1024] # Load the test set (dummy labels only)
docs = du.load_dataset("data/ner/test.masked")
self.X_test, self.y_test = du.docs_to_windows(docs, word_to_num, tag_to_num, wsize=self.config.window_size) def add_placeholders(self):
"""
生成placeholder 变量去接收输入的 tensors
这些placeholder 被用作输入在模型的其他地方调用,并且会在训练的时候被填充数据
当"None"在placeholder的大小当中的时候 ,是非常灵活的
在计算图中填充如下节点:
input_placeholder: tensor(None,window_size) . type:tf.int32
labels_placeholder: tensor(None,label_size) . type:tf.float32
dropout_placeholder: Dropout value placeholder (scalar), type: tf.float32
把这些placeholders 添加到 类对象自己作为 常量
"""
self.input_placeholder = tf.placeholder(tf.int32, shape=[None, self.config.window_size], name='Input')
self.labels_placeholder = tf.placeholder(tf.float32, shape=[None, self.config.label_size], name='Target')
self.dropout_placeholder = tf.placeholder(tf.float32, name='Dropout') def create_feed_dict(self, input_batch, dropout, label_batch=None):
"""
为softmax分类器创建一个feed字典
feed_dict={
<placeholder>:<tensor of values to be passed for placeholder>,
} Hint:The keys for the feed_dict should be a subset of the placeholder
tensors created in add_placeholders.
Hint:When label_batch is None,don't add a labels entry to the feed_dict Args:
input_batch:A batch of input data
label_batch:A batch of label data
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
feed_dict = {
self.input_placeholder:input_batch,
}
if label_batch is not None:
feed_dict[self.labels_placeholder] = label_batch
if dropout is not None:
feed_dict[self.dropout_placeholder] = dropout
return feed_dict def add_embedding(self):
# The embedding lookup is currently only implemented for the CPU
with tf.device('/cpu:0'):
embedding = tf.get_variable('Embedding', [len(self.wv), self.config.embed_size])
window = tf.nn.embedding_lookup(embedding, self.input_placeholder)
window = tf.reshape(
window, [-1, self.config.window_size * self.config.embed_size])
# ## END YOUR CODE
return window def add_model(self, window):
"""Adds the 1-hidden-layer NN
Hint:使用一个variable_scope ("layer") 对于第一个隐藏层
另一个("Softmax")用于线性变换在最后一个softmax层之前
确保使用xavier_weight_init 方法,你之前定义好的
Hint:确保添加了正则化和dropout在这个网络中
正则化应该被添加到损失函数上,
dropout应该被添加到每一个变量的梯度上面
Hint:可以考虑使用tensorflow Graph 集合 例如(total_loss)来收集正则化
和损失项,你之后会在损失函数中添加的
Hint:这里会需要创建不同维度的变量,如下所示:
W:(window_size*embed_size,hidden_size)
b1:(hidden_size,)
U:(hidden_size,label_size)
b2:(label_size)
Args:
window: tf.Tensor of shape(-1,window_size*embed_size)
Returns:
output: tf.Tensor of shape(batch_size,label_size)
"""
with tf.variable_scope('layer1', initializer=xavier_weight_init()) as scope:
W = tf.get_variable('w', [self.config.window_size * self.config.embed_size, self.config.hidden_size])
b1 = tf.get_variable('b1', [self.config.hidden_size])
h = tf.nn.tanh(tf.matmul(window, W) + b1)
if self.config.l2:
tf.add_to_collection('total_loss', 0.5 * self.config.l2 * tf.nn.l2_loss(W)) with tf.variable_scope('layer2', initializer=xavier_weight_init()) as scope:
U = tf.get_variable('U', [self.config.hidden_size, self.config.label_size])
b2 = tf.get_variable('b2', [self.config.label_size])
y = tf.matmul(h, U) + b2
if self.config.l2:
tf.add_to_collection('total_loss', 0.5 * self.config.l2 * tf.nn.l2_loss(U))
output = tf.nn.dropout(y, self.dropout_placeholder)
return output def add_loss_op(self, y):
"""将交叉熵损失添加到计算图上
Hint:你或许可以使用tf.nn.softmax_cross_entropy_with_logits 方法来简化你的
实现,
或许可以使用tf.reduce_mean
参数:
pred:A tensor shape:(batch_size,n_classes)
返回值:
loss:A 0-d tensor (数值类型)
"""
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=self.labels_placeholder))
tf.add_to_collection('total_loss', cross_entropy)
loss = tf.add_n(tf.get_collection('total_loss'))
return loss def add_training_op(self, loss):
"""设置训练目标
创建一个优化器并且将梯度下降应用到所有变量的更新上面
Hint:对于这个模型使用tf.train.AdamOptimizer优化方法
调用optimizer.minimize()会返回一个train_op的对象
Args:
loss:Loss tensor,from cross entropy_loss
Returns:
train_op:The Op for training
"""
optimizer = tf.train.AdamOptimizer(self.config.lr)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op def __init__(self, config):
"""使用上面定义好的函数来构造神经网络"""
self.config = config
self.load_data(debug=False)
self.add_placeholders()
window = self.add_embedding()
y = self.add_model(window) self.loss = self.add_loss_op(y)
self.predictions = tf.nn.softmax(y)
one_hot_prediction = tf.arg_max(self.predictions, 1)
correct_prediction = tf.equal(tf.arg_max(self.labels_placeholder, 1), one_hot_prediction)
self.correct_predictions = tf.reduce_sum(tf.cast(correct_prediction, 'int32'))
self.train_op = self.add_training_op(self.loss) def run_epoch(self, session, input_data, input_labels, shuffle=True, verbose=True):
orig_X, orig_y = input_data, input_labels
dp = self.config.dropout
# We 're interested in keeping track of the loss and accuracy during training
total_loss = []
total_correct_examples = 0
total_processed_examples = 0
total_steps = len(orig_X) / self.config.batch_size
for step, (x, y) in enumerate(data_iterator(orig_X, orig_y, batch_size=self.config.batch_size, label_size=self.config.label_size, shuffle=shuffle)):
feed = self.create_feed_dict(input_batch=x, dropout=dp, label_batch=y)
loss, total_correct, _ = session.run(
[self.loss, self.correct_predictions, self.train_op],
feed_dict=feed)
total_processed_examples += len(x)
total_correct_examples += total_correct
total_loss.append(loss) if verbose and step % verbose == 0:
sys.stdout.write('\r{}/{} : loss = {}'.format(step, total_steps, np.mean(total_loss)))
if verbose:
sys.stdout.write('\r')
sys.stdout.flush()
return np.mean(total_loss), total_correct_examples / float(total_processed_examples) def predict(self, session, X, y=None):
"""从提供的模型中进行预测"""
# 如果y已经给定,loss也已经计算出来了
# 我们对dropout求导数通过把他设置为1
dp = 1
losses = []
results = []
if np.any(y):
data = data_iterator(X, y, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=False)
else:
data = data_iterator(X, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=False)
for step, (x, y) in enumerate(data):
feed = self.create_feed_dict(input_batch=x, dropout=dp)
if np.any(y):
feed[self.labels_placeholder] = y
loss, preds = session.run([self.loss, self.predictions], feed_dict=feed)
losses.append(loss)
else:
preds = session.run(self.predictions, feed_dict=feed)
predicted_indices = preds.argmax(axis=1)
results.extend(predicted_indices)
return np.mean(losses), results def print_confusion(confusion, num_to_tag):
"""Helper method that prints confusion matrix"""
# Summing top to bottom gets the total number of tags guessed as T
total_guessed_tags = confusion.sum(axis=0)
# Summing left to right gets the total number of true tags
total_true_tags = confusion.sum(axis=1)
print("")
print(confusion)
for i, tag in sorted(num_to_tag.items()):
print(i, "-----", tag)
prec = confusion[i, i] / float(total_guessed_tags[i])
recall = confusion[i, i] / float(total_true_tags[i])
print("Tag: {} - P {:2.4f} / R {:2.4f}".format(tag, prec, recall)) def calculate_confusion(config, predicted_indices, y_indices):
"""帮助方法计算混淆矩阵"""
confusion = np.zeros((config.label_size, config.label_size), dtype=np.int32)
for i in range(len(y_indices)):
correct_label = y_indices[i]
guessed_label = predicted_indices[i]
confusion[correct_label, guessed_label] += 1
return confusion def save_predictions(predictions, filename):
"""保存predictions 到 提供的文件中"""
with open(filename, "w") as f:
for prediction in predictions:
f.write(str(prediction) + "\n") def test_NER():
"""测试NER模型的实现
你可以使用这个函数来测试你实现了的命名实体识别的神经网络
当调试的时候,设置最大的max_epochs 在 Config 对象里边为1
这样便可以快速地进行迭代
"""
config = Config()
with tf.Graph().as_default():
model = NERModel(config) init = tf.initialize_all_variables()
saver = tf.train.Saver() with tf.Session() as session:
best_val_loss = float('inf')
best_val_epoch = 0 session.run(init)
for epoch in range(config.max_epochs):
print('Epoch {}'.format(epoch))
start = time.time()
# ##
train_loss, train_acc = model.run_epoch(session, model.X_train, model.y_train)
val_loss, predictions = model.predict(session, model.X_dev, model.y_dev)
print('Training loss : {}'.format(train_loss))
print('Training acc : {}'.format(train_acc))
print('Validation loss : {}'.format(val_loss))
if val_loss < best_val_loss:
best_val_loss = val_loss
best_val_epoch = epoch
if not os.path.exists("./weights"):
os.makedirs("./weights")
saver.save(session, './weights/ner.weights')
if epoch - best_val_epoch > config.early_stopping:
break
confusion = calculate_confusion(config, predictions, model.y_dev)
print_confusion(confusion, model.num_to_tag)
print('Total time: {}'.format(time.time() - start)) #saver.restore(session, './weights/ner.weights')
#print('Test')
#print('=-=-=')
#print('Writing predictions t o q2_test.predicted')
#_, predictions = model.predict(session, model.X_test, model.y_test)
#save_predictions(predictions, "q2_test.predicted") if __name__ == "__main__":
test_NER()

下面是训练完的log

WARNING:tensorflow:From C:\Users\weizhen\Documents\GitHub\TflinearClassifier\q2_NER.py:291: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2017-10-02 16:31:40.821644: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.822256: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.822842: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.823263: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.823697: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.824035: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.824464: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:40.824850: W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-10-02 16:31:42.184267: I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:887] Found device 0 with properties:
name: GeForce 940MX
major: 5 minor: 0 memoryClockRate (GHz) 1.189
pciBusID 0000:01:00.0
Total memory: 2.00GiB
Free memory: 1.66GiB
2017-10-02 16:31:42.184794: I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:908] DMA: 0
2017-10-02 16:31:42.185018: I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:918] 0: Y
2017-10-02 16:31:42.185582: I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:977] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940MX, pci bus id: 0000:01:00.0)
Epoch 0 0/3181.578125 : loss = 1.6745071411132812
Training loss : 1.6745071411132812
Training acc : 0.046875
Validation loss : 1.6497892141342163 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 0 0 1268]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
C:\Users\weizhen\Documents\GitHub\TflinearClassifier\q2_NER.py:262: RuntimeWarning: invalid value encountered in true_divide
prec = confusion[i, i] / float(total_guessed_tags[i])
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 3.293267250061035
Epoch 1/3181.578125 : loss = 1.6299598217010498
Training loss : 1.6299598217010498
Training acc : 0.0625
Validation loss : 1.6258254051208496 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 0 0 1268]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 3.019239664077759
Epoch 2/3181.578125 : loss = 1.6292331218719482
Training loss : 1.6292331218719482
Training acc : 0.078125
Validation loss : 1.6021082401275635 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 0 0 1268]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 2.9794013500213623
Epoch 3/3181.578125 : loss = 1.6349217891693115
Training loss : 1.6349217891693115
Training acc : 0.015625
Validation loss : 1.5785211324691772 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 0 0 1268]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 2.4377009868621826
Epoch 4/3181.578125 : loss = 1.5779037475585938
Training loss : 1.5779037475585938
Training acc : 0.09375
Validation loss : 1.5549894571304321 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 0 0 1268]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 2.4941294193267822
Epoch 5/3181.578125 : loss = 1.5726330280303955
Training loss : 1.5726330280303955
Training acc : 0.078125
Validation loss : 1.5313135385513306 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 1 0 1267]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 1.0000 / R 0.0008
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 2.4369616508483887
Epoch 6/3181.578125 : loss = 1.530135989189148
Training loss : 1.530135989189148
Training acc : 0.046875
Validation loss : 1.5071308612823486 [[ 0 0 0 0 42759]
[ 0 0 0 0 2094]
[ 0 0 6 0 1262]
[ 0 0 0 0 2092]
[ 0 0 0 0 3149]]
0 ----- O
Tag: O - P nan / R 0.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 1.0000 / R 0.0047
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0613 / R 1.0000
Total time: 2.4289004802703857
Epoch 7/3181.578125 : loss = 1.4907350540161133
Training loss : 1.4907350540161133
Training acc : 0.0625
Validation loss : 1.482757806777954 [[ 789 0 0 0 41970]
[ 19 0 0 0 2075]
[ 1 0 7 0 1260]
[ 45 0 1 0 2046]
[ 48 0 0 0 3101]]
0 ----- O
Tag: O - P 0.8747 / R 0.0185
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 0.8750 / R 0.0055
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0615 / R 0.9848
Total time: 3.0616846084594727
Epoch 8/3181.578125 : loss = 1.474185824394226
Training loss : 1.474185824394226
Training acc : 0.046875
Validation loss : 1.4580132961273193 [[ 7684 0 0 0 35075]
[ 364 0 0 0 1730]
[ 51 0 11 0 1206]
[ 445 0 1 0 1646]
[ 500 0 0 0 2649]]
0 ----- O
Tag: O - P 0.8496 / R 0.1797
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 0.9167 / R 0.0087
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0626 / R 0.8412
Total time: 2.969224214553833
Epoch 9/3181.578125 : loss = 1.498674988746643
Training loss : 1.498674988746643
Training acc : 0.28125
Validation loss : 1.4329923391342163 [[20553 0 1 0 22205]
[ 1273 0 0 0 821]
[ 364 0 7 0 897]
[ 980 0 2 0 1110]
[ 1426 0 0 0 1723]]
0 ----- O
Tag: O - P 0.8356 / R 0.4807
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 0.7000 / R 0.0055
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0644 / R 0.5472
Total time: 2.5193586349487305
Epoch 10/3181.578125 : loss = 1.4385690689086914
Training loss : 1.4385690689086914
Training acc : 0.421875
Validation loss : 1.4074962139129639 [[34564 0 4 0 8191]
[ 1764 0 0 0 330]
[ 767 0 7 0 494]
[ 1594 0 2 0 496]
[ 2355 0 0 0 794]]
0 ----- O
Tag: O - P 0.8421 / R 0.8083
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 0.5385 / R 0.0055
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.0770 / R 0.2521
Total time: 2.3797054290771484
Epoch 11/3181.578125 : loss = 1.4594019651412964
Training loss : 1.4594019651412964
Training acc : 0.546875
Validation loss : 1.3817591667175293 [[40966 0 2 0 1791]
[ 1976 0 0 0 118]
[ 1088 0 4 0 176]
[ 1900 0 0 0 192]
[ 2814 0 0 0 335]]
0 ----- O
Tag: O - P 0.8404 / R 0.9581
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P 0.6667 / R 0.0032
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.1283 / R 0.1064
Total time: 2.4073784351348877
Epoch 12/3181.578125 : loss = 1.3720815181732178
Training loss : 1.3720815181732178
Training acc : 0.78125
Validation loss : 1.3555692434310913 [[42709 0 0 0 50]
[ 2085 0 0 0 9]
[ 1266 0 0 0 2]
[ 2086 0 0 0 6]
[ 3115 0 0 0 34]]
0 ----- O
Tag: O - P 0.8332 / R 0.9988
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P 0.3366 / R 0.0108
Total time: 2.4379138946533203
Epoch 13/3181.578125 : loss = 1.3634321689605713
Training loss : 1.3634321689605713
Training acc : 0.828125
Validation loss : 1.328884482383728 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.8378336429595947
Epoch 14/3181.578125 : loss = 1.3688112497329712
Training loss : 1.3688112497329712
Training acc : 0.75
Validation loss : 1.302013635635376 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.7120652198791504
Epoch 15/3181.578125 : loss = 1.3235018253326416
Training loss : 1.3235018253326416
Training acc : 0.78125
Validation loss : 1.2748615741729736 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6104214191436768
Epoch 16/3181.578125 : loss = 1.3185033798217773
Training loss : 1.3185033798217773
Training acc : 0.765625
Validation loss : 1.2475427389144897 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.3700265884399414
Epoch 17/3181.578125 : loss = 1.3193732500076294
Training loss : 1.3193732500076294
Training acc : 0.703125
Validation loss : 1.2201541662216187 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.439958095550537
Epoch 18/3181.578125 : loss = 1.2185351848602295
Training loss : 1.2185351848602295
Training acc : 0.75
Validation loss : 1.1924999952316284 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.8921308517456055
Epoch 19/3181.578125 : loss = 1.2128124237060547
Training loss : 1.2128124237060547
Training acc : 0.75
Validation loss : 1.164793610572815 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.3643531799316406
Epoch 20/3181.578125 : loss = 1.174509882926941
Training loss : 1.174509882926941
Training acc : 0.71875
Validation loss : 1.137137770652771 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.7417917251586914
Epoch 21/3181.578125 : loss = 1.056962490081787
Training loss : 1.056962490081787
Training acc : 0.84375
Validation loss : 1.1092265844345093 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.5229830741882324
Epoch 22/3181.578125 : loss = 1.1316486597061157
Training loss : 1.1316486597061157
Training acc : 0.796875
Validation loss : 1.0816625356674194 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.7065508365631104
Epoch 23/3181.578125 : loss = 1.073209524154663
Training loss : 1.073209524154663
Training acc : 0.78125
Validation loss : 1.0542036294937134 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6912477016448975
Epoch 24/3181.578125 : loss = 1.0102397203445435
Training loss : 1.0102397203445435
Training acc : 0.859375
Validation loss : 1.0271364450454712 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.5654654502868652
Epoch 25/3181.578125 : loss = 1.0918526649475098
Training loss : 1.0918526649475098
Training acc : 0.734375
Validation loss : 1.001003623008728 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.663228750228882
Epoch 26/3181.578125 : loss = 1.0216875076293945
Training loss : 1.0216875076293945
Training acc : 0.84375
Validation loss : 0.9754133820533752 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.5872113704681396
Epoch 27/3181.578125 : loss = 1.0990902185440063
Training loss : 1.0990902185440063
Training acc : 0.78125
Validation loss : 0.9509017467498779 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.443047285079956
Epoch 28/3181.578125 : loss = 0.9783419966697693
Training loss : 0.9783419966697693
Training acc : 0.8125
Validation loss : 0.9272997379302979 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6797432899475098
Epoch 29/3181.578125 : loss = 1.0568724870681763
Training loss : 1.0568724870681763
Training acc : 0.765625
Validation loss : 0.904884934425354 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.3945367336273193
Epoch 30/3181.578125 : loss = 1.0237849950790405
Training loss : 1.0237849950790405
Training acc : 0.78125
Validation loss : 0.883781909942627 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.7488887310028076
Epoch 31/3181.578125 : loss = 1.0338774919509888
Training loss : 1.0338774919509888
Training acc : 0.765625
Validation loss : 0.8637697696685791 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.381608247756958
Epoch 32/3181.578125 : loss = 0.9260292649269104
Training loss : 0.9260292649269104
Training acc : 0.78125
Validation loss : 0.8448039889335632 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.5534446239471436
Epoch 33/3181.578125 : loss = 0.8264249563217163
Training loss : 0.8264249563217163
Training acc : 0.875
Validation loss : 0.8267776370048523 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.558243751525879
Epoch 34/3181.578125 : loss = 0.9866911768913269
Training loss : 0.9866911768913269
Training acc : 0.8125
Validation loss : 0.8101168274879456 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.464554786682129
Epoch 35/3181.578125 : loss = 0.8703485727310181
Training loss : 0.8703485727310181
Training acc : 0.8125
Validation loss : 0.7947656512260437 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.3714654445648193
Epoch 36/3181.578125 : loss = 0.8071379661560059
Training loss : 0.8071379661560059
Training acc : 0.84375
Validation loss : 0.7804707288742065 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.8228049278259277
Epoch 37/3181.578125 : loss = 0.6435794234275818
Training loss : 0.6435794234275818
Training acc : 0.875
Validation loss : 0.7670522928237915 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6811318397521973
Epoch 38/3181.578125 : loss = 0.6902540326118469
Training loss : 0.6902540326118469
Training acc : 0.890625
Validation loss : 0.7546741962432861 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.596187114715576
Epoch 39/3181.578125 : loss = 0.6969885230064392
Training loss : 0.6969885230064392
Training acc : 0.859375
Validation loss : 0.7434151768684387 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6147048473358154
Epoch 40/3181.578125 : loss = 0.87004554271698
Training loss : 0.87004554271698
Training acc : 0.78125
Validation loss : 0.7334315776824951 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.3841097354888916
Epoch 41/3181.578125 : loss = 0.95426344871521
Training loss : 0.95426344871521
Training acc : 0.78125
Validation loss : 0.7244532704353333 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.304476022720337
Epoch 42/3181.578125 : loss = 0.8543925285339355
Training loss : 0.8543925285339355
Training acc : 0.78125
Validation loss : 0.7163312435150146 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6401660442352295
Epoch 43/3181.578125 : loss = 0.6948934197425842
Training loss : 0.6948934197425842
Training acc : 0.859375
Validation loss : 0.7088930606842041 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.954803228378296
Epoch 44/3181.578125 : loss = 0.8735166192054749
Training loss : 0.8735166192054749
Training acc : 0.796875
Validation loss : 0.7022351622581482 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.6469264030456543
Epoch 45/3181.578125 : loss = 0.8812070488929749
Training loss : 0.8812070488929749
Training acc : 0.828125
Validation loss : 0.695988118648529 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.8571887016296387
Epoch 46/3181.578125 : loss = 0.5007133483886719
Training loss : 0.5007133483886719
Training acc : 0.90625
Validation loss : 0.690228283405304 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.360257625579834
Epoch 47/3181.578125 : loss = 0.8069882988929749
Training loss : 0.8069882988929749
Training acc : 0.8125
Validation loss : 0.6848161220550537 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.2997841835021973
Epoch 48/3181.578125 : loss = 0.6994635462760925
Training loss : 0.6994635462760925
Training acc : 0.8125
Validation loss : 0.6798946857452393 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.5274598598480225
Epoch 49/3181.578125 : loss = 0.7816348075866699
Training loss : 0.7816348075866699
Training acc : 0.8125
Validation loss : 0.6751761436462402 [[42759 0 0 0 0]
[ 2094 0 0 0 0]
[ 1268 0 0 0 0]
[ 2092 0 0 0 0]
[ 3149 0 0 0 0]]
0 ----- O
Tag: O - P 0.8325 / R 1.0000
1 ----- LOC
Tag: LOC - P nan / R 0.0000
2 ----- MISC
Tag: MISC - P nan / R 0.0000
3 ----- ORG
Tag: ORG - P nan / R 0.0000
4 ----- PER
Tag: PER - P nan / R 0.0000
Total time: 2.7655985355377197

更完整的代码请参考:

 https://github.com/weizhenzhao/cs224d_nlp_problem_set2

cs224d 作业 problem set2 (二) TensorFlow 实现命名实体识别的更多相关文章

  1. cs224d 作业 problem set2 (三) 用RNNLM模型实现Language Model,来预测下一个单词的出现

      今天将的还是cs224d 的problem set2 的第三部分习题, 原来国外大学的系统难度真的如此之大,相比之下还是默默地再天朝继续搬砖吧 下面讲述一下RNN语言建模的数学公式: 给出一串连续 ...

  2. CS224d 单隐层全连接网络处理英文命名实体识别tensorflow

    什么是NER? 命名实体识别(NER)是指识别文本中具有特定意义的实体,主要包括人名.地名.机构名.专有名词等.命名实体识别是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,作为结构化 ...

  3. cs224d 作业 problem set2 (一) 用tensorflow纯手写实现sofmax 函数,线性判别分析,命名实体识别

    Hi Dear Today we will use tensorflow to implement the softmax regression and linear classifier algor ...

  4. cs224d 作业 problem set1 (二) 简单的情感分析

    使用在上一篇博客中训练好的wordvector 在这一节进行情感分析. 因为在上一节中得到的是一个词就是一个向量 所以一句话便是一个矩阵,矩阵的每一列表示一个词向量 情感分析的前提是已知一句话是 (超 ...

  5. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  6. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  7. 用深度学习做命名实体识别(二):文本标注工具brat

    本篇文章,将带你一步步的安装文本标注工具brat. brat是一个文本标注工具,可以标注实体,事件.关系.属性等,只支持在linux下安装,其使用需要webserver,官方给出的教程使用的是Apac ...

  8. NLP(二十四)利用ALBERT实现命名实体识别

      本文将会介绍如何利用ALBERT来实现命名实体识别.如果有对命名实体识别不清楚的读者,请参考笔者的文章NLP入门(四)命名实体识别(NER) .   本文的项目结构如下:   其中,albert_ ...

  9. DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别

    三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...

随机推荐

  1. pytest_用例运行级别_函数级

    '''  函数级(setup_function/teardown_function只对函数用例生 效(不在类中)在类中是用该方法不生效 ''' import pytest def setup_mod ...

  2. Docker 进入容器的4种方法

    在使用Docker创建了容器之后,大家比较关心的就是如何进入该容器了,其实进入Docker容器有好几多种方式,这里我们就讲一下常用的几种进入Docker容器的方法. 进入Docker容器比较常见的几种 ...

  3. Linux操作系统(一)_常用命令

    1.系统工作命令 date  显示/设置系统时间或日期 date:显示时间 date -s “20190319 11:35:56”:设置时间 clock  显示设置硬件时钟 clock -s:以硬件时 ...

  4. GHCi Prelude学习

    参考:http://www.cse.unsw.edu.au/~en1000/haskell/inbuilt.html http://www.cse.unsw.edu.au/~en1000/haskel ...

  5. CSS实现文字阴影的效果

    CSS中有两种阴影效果,一种是DropShadow(投影),另一种是Shadow(阴影).1.DropShadow语法:{FILTER:DropShadow(Color=color,OffX=offX ...

  6. 关于linux的一些常用的指令

    top:命令经常用来监控linux的系统状况,比如cpu.内存的使用. free:观察内存使用. Find:查找指定的文件. Whereis:查找指定的文件源和二进制文件和手册等 Which:用于查询 ...

  7. 学习contiki需要知道的一些概念和注意事项

    概念: 1.宏:所谓宏,就是一些命令组织在一起,作为一个单独命令完成一个特定任务.Microsoft Word中对宏定义为:“宏就是能组织到一起作为一独立的命令使用的一系列word命令,它能使日常工作 ...

  8. Linux查看软件安装路径,和文件的位置

    查看软件是否安装:rpm -qa|grep xx 列出软件安装包安装的文件:rpm -ql 直接使用rpm -qal |grep mysql 查看mysql所有安装包的文件存储位置 通过find去查找 ...

  9. Sql Server Management Studio 18 打开闪退问题

    解决方案 找到MSSMS安装位置,例如我是安装到了D:\Program Files (x86)\Microsoft SQL Server Management Studio 18 将D:\Progra ...

  10. VoIP系统大盘点

    一.VoIP拓扑 PBX是程控交换机,程控交换机有实体交换机和软件模拟的交换机. 软件模拟的交换机,即交换机服务器,常用开源的sip服务器有asterisk,freepbx, opensip, fre ...