RMQ 区间最大值最小值 最频繁次数
区间的最大值和最小值
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = ;
int n,query;
int num[MAXN]; int F_Min[MAXN][],F_Max[MAXN][]; void Init()
{
for(int i = ; i <= n; i++)
{
F_Min[i][] = F_Max[i][] = num[i];
} for(int i = ; (<<i) <= n; i++) //按区间长度递增顺序递推
{
for(int j = ; j+(<<i)- <= n; j++) //区间起点
{
F_Max[j][i] = max(F_Max[j][i-],F_Max[j+(<<(i-))][i-]);
F_Min[j][i] = min(F_Min[j][i-],F_Min[j+(<<(i-))][i-]);
}
}
} int Query_max(int l,int r)
{
int k = (int)(log(double(r-l+))/log((double)));
return max(F_Max[l][k], F_Max[r-(<<k)+][k]);
} int Query_min(int l,int r)
{
int k = (int)(log(double(r-l+))/log((double)));
return min(F_Min[l][k], F_Min[r-(<<k)+][k]);
} int main()
{
int a,b;
scanf("%d %d",&n,&query);
for(int i = ; i <= n; i++)
scanf("%d",&num[i]);
Init();
while(query--)
{
scanf("%d %d",&a,&b);
printf("区间%d到%d的最大值为:%d\n",a,b,Query_max(a,b));
printf("区间%d到%d的最小值为:%d\n",a,b,Query_min(a,b));
printf("区间%d到%d的最大值和最小值只差为:%d\n",a,b,Query_max(a,b)-Query_min(a,b));
}
return ;
}
区间内出现次数最多的数字出现的次数
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; const int maxn = ;
int num[maxn], f[maxn], MAX[maxn][];
int n;
int max(int a,int b)
{
return a>b ? a:b;
}
int rmq_max(int l,int r)
{
if(l > r)
return ;
int k = log((double)(r-l+))/log(2.0);
return max(MAX[l][k],MAX[r-(<<k)+][k]);
}
void init()
{
for(int i = ; i <= n; i++)
{
MAX[i][] = f[i];
}
int k = log((double)(n+))/log(2.0);
for(int i = ; i <= k; i++)
{
for(int j = ; j+(<<i)- <= n; j++)
{
MAX[j][i] = max(MAX[j][i-],MAX[j+(<<(i-))][i-]);
}
}
}
int main()
{
int a, b, q;
while(scanf("%d",&n) && n)
{
scanf("%d",&q);
for(int i = ; i <= n; i++)
{
scanf("%d",&num[i]);
}
sort(num+,num+n+);
for(int i = ; i <= n; i++)
{
if(i == )
{
f[i] = ;
continue;
}
if(num[i] == num[i-])
{
f[i] = f[i-]+;
}
else
{
f[i] = ;
} } init(); for(int i = ; i <= q; i++)
{
scanf("%d%d",&a,&b);
int t = a;
while(t<=b && num[t]==num[t-])
{
t++;
}
int cnt = rmq_max(t,b);
int ans = max(t-a,cnt);
printf("%d\n",ans);
}
}
return ;
}
/*
10 3
-1 -1 1 2 1 1 1 10 10 10
2 3
1 10
5 10
*/
RMQ 区间最大值最小值 最频繁次数的更多相关文章
- RMQ 区间最大值 最小值查询
/*RMQ 更新最小值操作 By:draymonder*/ #include <iostream> #include <cstdio> using namespace std; ...
- POJ3264 Balanced Lineup 线段树区间最大值 最小值
Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...
- RMQ区间最大值与最小值查询
RMQ复杂度:建表$O\left ( nlgn \right ) $,查询$O\left ( 1 \right )$ ll F_Min[maxn][20],F_Max[maxn][20]; void ...
- dutacm.club 1094: 等差区间(RMQ区间最大、最小值,区间GCD)
1094: 等差区间 Time Limit:5000/3000 MS (Java/Others) Memory Limit:163840/131072 KB (Java/Others)Total ...
- poj 3264 区间最大最小值 RMQ问题之Sparse_Table算法
Balanced Lineup Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , %I64u Java ...
- Tunnel Warfare (区间合并|最大值最小值巧妙方法)
Tunnel Warfare http://acm.hdu.edu.cn/showproblem.php?pid=1540 Time Limit: 4000/2000 MS (Java/Others) ...
- RMQ区间最值查询
RMQ区间最值查询 概述 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A, 回答若干询问RMQ(A,i,j)(i,j<= ...
- poj 3264 线段树 求区间最大最小值
Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same ...
- hdu 3183 A Magic Lamp RMQ ST 坐标最小值
hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...
随机推荐
- iterator删除元素
总结 在需要的删除等操作时,不能使用简单的foreach,因为其底层依然用的是Iterator,但是调用的是集合中的remove方法. 使用迭代器对象调用其中的remove方法,以保证线程同步.
- iOS证书发布推送相关知识科普
账号种类 1.企业账号 299美刀 -- 可以自己发布App,不能发布到App Store 2.个人/公司账号 99美刀 -- 可以发布到App Store, 不可以自己发布不限安装数量的App 个人 ...
- SpringMVC中mvc:view-controller的使用
1.重定向 <mvc:view-controller path="/" view-name="redirect:/admin/index"/> 即如 ...
- SOUI3.0仿Android插值动画使用方法
在Android系统中,有插值动画,数值动画,属性动画,帧动画. 帧动画,在SOUI里可以通过AnimateImg这个控件来实现,其它几种动画3.0之前不支持,需要类似动画效果,只能自己通过定时器去实 ...
- Windows程序调用dll
可以写在WndProc的WM_CREATE里面,不能写在WinMain里面
- 阶段3 1.Mybatis_03.自定义Mybatis框架_2.自定义Mybatis的分析-创建代理对象的分析
如何创建代理对象,以及使用设计模式带来的优势 调用的组合关系 不关注的,执行JDBC那一套.第二个是解析XML,解析的技术有很多.
- 中国MOOC_零基础学Java语言_第3周 循环_2数字特征值
2 数字特征值(5分) 题目内容: 对数字求特征值是常用的编码算法,奇偶特征是一种简单的特征值.对于一个整数,从个位开始对每一位数字编号,个位是1号,十位是2号,以此类推.这个整数在第n位上的数字记作 ...
- mount挂载相关指令
最近需要重新挂载一块数据盘,增加挂载设置,遇到一些问题做下记录. step1:df -h 或 lsblk 查看分区挂载和对应挂载的目录 /dev/xxx /data step2:umount /dev ...
- 【MM系列】SAP MM模块-MIGO收货后自动打印收货单
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-MIGO收货后自动 ...
- 浅谈 JVM 结构体系、类加载、JDK JRE JVM 三者的关系
一.java类,创建.编译.到运行的工程: 1.随便建一个Java类,保存后就是一个.java文件, 2.然后我们使用 javac命令编译 .java文件,生产 .class文件. 3.再然后使用 j ...