考虑到此题麻烦了某hust大神&体现出了自己数学能力的欠缺 虽然最近一直比较忙 还是把这题的题解写下来吧

首先看完数据范围后 应该有不少人会反应到是$n^3$的DP 以$F[i][j]$表示从i到j这个区间所有情况之和

然后再枚举中间点$k$从$F[i][k]$到$F[k+1][j]$转移过来 但此题绝不是想到DP就可以了

--------------------------------------------------------------------------------------------------------------------------------

我们假设合并时 左区间所包含的情况为$a1.a2……ap$右区间所包含的情况为 $b1.b2……bq$

对于乘法运算 由于乘法分配率这个性质 直接把两边所有情况之和乘起来就行了

对于加减法运算 左边的区间每个元素出现的次数为q 右边区间每个元素出现的次数为p

进一步 我们可以发现 出现次数p、q其实也就等于(区间长度-1)! (感叹号代表阶乘 不要看错= =)

看起来该做的事情已经做完了 然而如果就这样写完代码 会发现连样例都过不了

---------------------------------------------------------------------------------------------------------------------------------

多想想之后 我们发现这样一个问题 虽然合并时 左右区间都是确定的 然而达到同一个左右区间的方案并不是唯一的

我们先考虑一个比较小的情况 假设左区间通过$c1.c2$这两个操作得到  右区间通过$d1.d2$这两个操作得到

那么我们只要保证同一区间内操作的有序性即可使得最后得到的两个区间分别相同

比如$c1.c2.d1.d2$或$c1.d1.c2.d2$或……

这样可能的情况就有$C_{4}^{2}$种 推广到其他情况便是

C((左区间长度-1)+(右区间长度-1),(左区间长度-1)) (注意到区间长度-1即为合并过程中的操作数)

于是这题便愉快地解决了

#include <bits/stdc++.h>
using namespace std;
const int N=,MOD=1e9+;
long long f[N][N],fac[N],c[N][N];
char s[N];
int n;
void prepare()
{
fac[]=;
for(int i=;i<=;++i)
fac[i]=fac[i-]*i%MOD;
c[][]=;
for(int i=;i<=;++i)
{
c[i][]=;
for(int j=;j<=i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%MOD;
}
}
void work()
{
for(int i=;i<=n;++i)
{
scanf("%lld",&f[i][i]);
for(int j=i+;j<=n;++j)
f[i][j]=;
}
scanf("%s",&s[]);
for(int len=;len<=n;++len)
for(int i=;i+len-<=n;++i)
{
int j=i+len-;
for(int k=i;k<j;++k)
{
if(s[k]=='*')
f[i][j]+=f[i][k]*f[k+][j]%MOD*c[j-i-][k-i];
else if(s[k]=='+')
f[i][j]+=(f[i][k]*fac[j-k-]+f[k+][j]*fac[k-i])%MOD*c[j-i-][k-i];
else
f[i][j]+=(f[i][k]*fac[j-k-]-f[k+][j]*fac[k-i])%MOD*c[j-i-][k-i];
f[i][j]%=MOD;
}
}
//for(int i=1;i<=n;++i)
// for(int j=i;j<=n;++j)
// printf("%d %d %lld\n",i,j,f[i][j]);
printf("%lld\n",(f[][n]+MOD)%MOD); }
int main()
{
prepare();
while(~scanf("%d",&n))
work();
return ;
}

hdu 5396 Expression的更多相关文章

  1. 2015 Multi-University Training Contest 9 hdu 5396 Expression

    Expression Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. HDU 5396 Expression(DP+组合数)(详解)

    题目大意: 给你一个n然后是n个数. 然后是n-1个操作符,操作符是插入在两个数字之间的. 由于你不同的运算顺序,会产生不同的结果. 比如: 1 + 1 * 2 有两种  (1+1)*2   或者   ...

  3. hdu 5396 Expression(区间dp)

    Problem Description Teacher Mai has n numbers a1,a2,⋯,anand n−1 operators("+", "-&quo ...

  4. HDU 5396 区间DP 数学 Expression

    题意:有n个数字,n-1个运算符,每个运算符的顺序可以任意,因此一共有 (n - 1)! 种运算顺序,得到 (n - 1)! 个运算结果,然后求这些运算结果之和 MOD 1e9+7. 分析: 类比最优 ...

  5. HDU 6342 Expression in Memories(模拟)多校题解

    题意:给你一个规则,问你写的对不对. 思路:规则大概概括为:不能出现前导零,符号两边必须是合法数字.我们先把所有问号改好,再去判断现在是否合法,这样判断比一边改一边判断容易想. 下面的讲解问号只改为+ ...

  6. hdu5396 Expression

    Expression Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  7. 组合数学第一发 hdu 2451 Simple Addition Expression

    hdu 2451 Simple Addition Expression Problem Description A luxury yacht with 100 passengers on board ...

  8. HDU 2451 Simple Addition Expression(组合数学)

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2451 Problem Description A luxury yacht with 100 pass ...

  9. HDU 6342.Problem K. Expression in Memories-模拟-巴科斯范式填充 (2018 Multi-University Training Contest 4 1011)

    6342.Problem K. Expression in Memories 这个题就是把?变成其他的使得多项式成立并且没有前导零 官方题解: 没意思,好想咸鱼,直接贴一篇别人的博客,写的很好,比我的 ...

随机推荐

  1. Oracle简单学习

    最近一段时间重温了oracle关于存储过程和oracle包以及function中的定义, 先看一下要用的表: devices(id number, name varchar2, age number) ...

  2. 二维码生成器,基于python,segno库

    import segno temp = input("Please enter value:") qr = segno.make(temp) qr.save("qrcod ...

  3. python读取ini文件时,特殊字符的读取

    前言: 使用python在读取配置文件时,由于配置文件中存在特殊字符,读取时出现了以下错误: configparser.InterpolationSyntaxError: '%' must be fo ...

  4. pthread_cond_timedwait

    该函数用于在同时等待条件变量时提供超时功能,不过该函数的超时时间是一个绝对时间.默认使用系统时间,这意味这,若修改系统时间,那么超时就不准确,有可能提前返回,也可能要几年才返回.这在某些需求下会导致b ...

  5. 20191107PHP创建数组练习

    数组练习 <?php //创建的方式 //1 $arr=array(20,30,50); $arr1=[30,60,70]; //3 //当遇到这种情况的时候键(key)是相同的,会取后面的赋值 ...

  6. 如何查找django安装路径

    需要找到django的安装路径,官方说的那个方法不好用,国内搜索都是都不到的,后来谷歌搜到了很简单 import django django 这样就可以找django的安装路径了,真心不懂为什么国内都 ...

  7. js利用递归与promise 按顺序请求数据

    问题:项目中有一个需求,一个tabBar下面如果没有内容就不让该tabBar显示,当然至于有没有内容,需要我们通过请求的来判断,但是由于请求是异步的,如何让请求按照tabBar的顺序进行? 方案:我们 ...

  8. vue,一路走来(6)--微信支付

    微信支付 https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=7_7&index=6 分享一下vue实现微信支付.在微信浏览器里面 ...

  9. tracert显示为超时

    1.那一跳禁PING2.那一跳不对TTL超时做响应处理,直接丢弃3.MPLS VPN网络  

  10. RequestMappingHandlerMapping详解

    我们先理简单梳理一个关系 关系梳理 spring ioc 是spring的核心,用来管理spring bean的生命周期 MVC 是一种使用 MVC(Model View Controller 模型- ...