POJ-1155 TELE 树形背包dp
dp[u][i]代表以u为根的子树选i个叶子的最大收益
那么dp[u][i]=max(dp[u][i],dp[v][k]+dp[u][i-k]-len) (1=<k<=i)
细节看代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int N=3e3+;
int n,m,leaf[N],v[N],dp[N][N];
vector<int> G[N],E[N]; int dfs1(int x) {
if (G[x].size()==) return leaf[x]=;
leaf[x]=;
for (int i=;i<G[x].size();i++) {
int y=G[x][i];
leaf[x]+=dfs1(y);
}
return leaf[x];
} void dfs2(int x) {
if (v[x]) dp[x][]=v[x];
dp[x][]=;
for (int i=;i<G[x].size();i++) {
int y=G[x][i],len=E[x][i]; dfs2(y); for (int j=leaf[x];j;j--)
for (int k=;k<=leaf[y];k++)
dp[x][j]=max(dp[x][j],dp[y][k]+dp[x][j-k]-len);
}
} int main()
{
int n,m; cin>>n>>m;
for (int i=;i<=n-m;i++) {
int t,x,y; cin>>t;
for (int j=;j<=t;j++) {
scanf("%d%d",&x,&y);
G[i].push_back(x);
E[i].push_back(y);
}
}
dfs1();
for (int i=n-m+;i<=n;i++) scanf("%d",&v[i]);
memset(dp,-0x3f,sizeof(dp));
dfs2();
int ans=;
for (int i=;i<=leaf[];i++) if (dp[][i]>=) ans=i;
cout<<ans<<endl;
return ;
}
POJ-1155 TELE 树形背包dp的更多相关文章
- [POJ1155]TELE(树形背包dp)
看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...
- [POJ 1155] TELE (树形dp)
题目链接:http://poj.org/problem?id=1155 题目大意:电视台要广播电视节目,要经过中转机构,到观众.从电视台到中转商到观众是一个树形结构,经过一条边需要支付成本.现在给你每 ...
- POJ 1155 - TELE 树型DP(泛化背包转移)..
dp[x][y]代表以x为根的子树..连接了y个终端用户(叶子)..所能获得的最大收益... dp[x][ ]可以看成当根为x时..有个背包空间为0~m...每个空间上记录了到到达这个空间的最大收益. ...
- POJ 1155 TELE [树状DP]
题意:略. 思路:用dp[i][k]来表示结点i给k个用户提供节目时的最大盈利(可能为负). 则递推方程为: dp[i][j] = max(dp[i][j], dp[i][m] + dp[v][j-m ...
- POJ 1155 树形背包(DP) TELE
题目链接: POJ 1155 TELE 分析: 用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理. dp[cnt][i+j] = max( dp[cnt][i+j ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp
题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...
- 【bzoj4987】Tree 树形背包dp
题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...
随机推荐
- 关于GeneXus封装方法Model的方法
最近 刚从外地出差回来 工作任务不是很重 能够抽点时间记点东西 下午花了2个多钟头尝试了一下GeneXus的封装方法的功能,这里记一下便于自己以后查看.我们在许多项目中或多或少都会有着重复代码编写的 ...
- 创建Uboot 环境变量 bin 文件
As we know, the bootloader stores its configuration into an area of the flash called the environment ...
- SQLRecoverableException: I/O Exception: Connection reset
https://stackoverflow.com/questions/6110395/sqlrecoverableexception-i-o-exception-connection-reset T ...
- Matplotlib_key_point
Matplotlib官方入门教程: http://www.labri.fr/perso/nrougier/teaching/matplotlib/ 本文参考教程: http://codingpy.co ...
- CSS中强大的EM(转)
转自:https://www.w3cplus.com/css/px-to-em CSS中强大的EM 作者:大漠 日期:2011-10-27 点击:97370 em 长度单位 编辑推荐:3月31日前,点 ...
- vue img标签用法
:符号是v-bind的缩写 服务器图片路径和请求本地路径 <img class="v-step-0" id="avatar" :src="myP ...
- Socket网络通信——IO、NIO、AIO介绍以及区别
一 基本概念 Socket又称"套接字",应用程序通常通过"套接字"向网路发出请求或者应答网络请求. Socket和ServerSocket类位于java.ne ...
- docker 运行jenkins及vue项目与springboot项目(一.安装docker)
docker 运行jenkins及vue项目与springboot项目: 一.安装docker 二.docker运行jenkins为自动打包运行做准备 三.jenkins的使用及自动打包vue项目 四 ...
- 【Guava】Guava Cache用法
背景 缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用.在日长开发有很多场合,有一些数据量不是很大,不会经常改动,并且访问非常频繁.但是由于受限于硬盘IO的性能或者远程网络 ...
- [CSP-S模拟测试]:游戏(最短路)
题目传送门(内部题35) 输入格式 第一行,两个正整数$X,Y$.第二行,三个非负整数$A,B,C$.第三行,一个正整数$N$.接下来$N$行,每行两个非负整数$x_i,y_i$. 输出格式 一行,一 ...