cr:http://blog.csdn.net/txwh0820/article/details/46392293

一、矩阵的迹求导法则 
 

1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix 


2. x is a column vector, A is a matrix

d(A∗x)/dx=A 
d(xT∗A)/dxT=A 
d(xT∗A)/dx=AT 
d(xT∗A∗x)/dx=xT(AT+A)

3. Practice: 
 
4. 矩阵求导计算法则 
求导公式(撇号为转置): 
Y = A * X –> DY/DX = A’ 
Y = X * A –> DY/DX = A 
Y = A’ * X * B –> DY/DX = A * B’ 
Y = A’ * X’ * B –> DY/DX = B * A’ 
乘积的导数: 
d(f*g)/dx=(df’/dx)g+(dg/dx)f’

一些结论

  1. 矩阵Y对标量x求导: 
    相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 
    Y = [y(ij)]–> dY/dx = [dy(ji)/dx]
  2. 标量y对列向量X求导: 
    注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量 
    y = f(x1,x2,..,xn) –> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)’
  3. 行向量Y’对列向量X求导: 
    注意1×M向量对N×1向量求导后是N×M矩阵。 
    将Y的每一列对X求偏导,将各列构成一个矩阵。 
    重要结论: 
    dX’/dX =I 
    d(AX)’/dX =A’
  4. 列向量Y对行向量X’求导: 
    转化为行向量Y’对列向量X的导数,然后转置。 
    注意M×1向量对1×N向量求导结果为M×N矩阵。 
    dY/dX’ =(dY’/dX)’
  5. 向量积对列向量X求导运算法则: 
    注意与标量求导有点不同。 
    d(UV’)/dX =(dU/dX)V’ + U(dV’/dX) 
    d(U’V)/dX =(dU’/dX)V + (dV’/dX)U’ 
    重要结论: 
    d(X’A)/dX =(dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A 
    d(AX)/dX’ =(d(X’A’)/dX)’ = (A’)’ = A 
    d(X’AX)/dX =(dX’/dX)AX + (d(AX)’/dX)X = AX + A’X
  6. 矩阵Y对列向量X求导: 
    将Y对X的每一个分量求偏导,构成一个超向量。 
    注意该向量的每一个元素都是一个矩阵。
  7. 矩阵积对列向量求导法则: 
    d(uV)/dX =(du/dX)V + u(dV/dX) 
    d(UV)/dX =(dU/dX)V + U(dV/dX) 
    重要结论: 
    d(X’A)/dX =(dX’/dX)A + X’(dA/dX) = IA + X’0 = A
  8. 标量y对矩阵X的导数: 
    类似标量y对列向量X的导数, 
    把y对每个X的元素求偏导,不用转置。 
    dy/dX = [Dy/Dx(ij) ] 
    重要结论: 
    y = U’XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV’ 
    y = U’X’XU 则dy/dX = 2XUU’ 
    y =(XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ +0 = 2(XU-V)U’
  9. 矩阵Y对矩阵X的导数: 
    将Y的每个元素对X求导,然后排在一起形成超级矩阵。 
    10.乘积的导数 
    d(f*g)/dx=(df’/dx)g+(dg/dx)f’ 
    结论 
    d(x’Ax)=(d(x”)/dx)Ax+(d(Ax)/dx)(x”)=Ax+A’x (注意:”是表示两次转置)

矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献: 
http://www.psi.toronto.edu/matrix/intro.html#Intro 
http://www.psi.toronto.edu/matrix/calculus.html 
http://www.stanford.edu/~dattorro/matrixcalc.pdf 
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf 
http://www4.ncsu.edu/~pfackler/MatCalc.pdf 
http://center.uvt.nl/staff/magnus/wip12.pdf

矩阵的 Frobenius 范数及其求偏导法则的更多相关文章

  1. 矩阵的frobenius范数及其求偏导法则

    例子: http://www.mathchina.net/dvbbs/dispbbs.asp?boardid=4&Id=3673

  2. 矩阵的f范数及其求偏导法则

    转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则   1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...

  3. Maths | 二次型求偏导

  4. 用tensorflow求偏导

    # coding:utf-8 from __future__ import absolute_import from __future__ import unicode_literals from _ ...

  5. MathType二次偏导怎么表示

    求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...

  6. Frobenius norm(Frobenius 范数)

    Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F. 矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和,即 可用于 利用低秩矩阵来近似单一数据矩阵. 用数学表 ...

  7. C++实现矩阵的相加/相称/转置/求鞍点

    1.矩阵相加 两个同型矩阵做加法,就是对应的元素相加. #include<iostream> using namespace std; int main(){ int a[3][3]={{ ...

  8. 螺旋矩阵O(1)根据坐标求值

    传送门 洛谷2239 •题意 从矩阵的左上角(第11行第11列)出发,初始时向右移动: 如果前方是未曾经过的格子,则继续前进,否则右转: 重复上述操作直至经过矩阵中所有格子. 根据经过顺序,在格子中依 ...

  9. 关于matlab矩阵卷积conv2和傅里叶变换求卷积ifft2的关系

    先定义两个矩阵 a = [1 2 3 5 ; 4 7 9 5;1 4 6 7;5 4 3 7;8 7 5 1] %a矩阵取5*4 b = [1 5 4; 3 6 8; 1 5 7]   %b矩阵如多数 ...

随机推荐

  1. java nio socket使用示例

    这个示例,实现一个简单的C/S,客户端向服务器端发送消息,服务器将收到的消息打印到控制台,并将该消息返回给客户端,客户端再打印到控制台.现实的应用中需要定义发送数据使用的协议,以帮助服务器解析消息.本 ...

  2. 关于GeneXus封装方法Model的方法

     最近 刚从外地出差回来 工作任务不是很重 能够抽点时间记点东西 下午花了2个多钟头尝试了一下GeneXus的封装方法的功能,这里记一下便于自己以后查看.我们在许多项目中或多或少都会有着重复代码编写的 ...

  3. MongoDB--副本集基本信息

    副本集的概念 副本集是一组服务器,其中有一个是主服务器(primary),用于处理客户端请求:还有多个备份服务器(secondary),用于保存主服务器的数据副本.如果主服务器崩溃了,备份服务器会自动 ...

  4. mysql百万级别重排主键id(网上的删除重建id在大数据量下会出错)

    网上教程: 先删除旧的主键 再新建主键 :数据量少时没问题,不会出现主键自增空缺间隔的情况(如:1,2,3,5):但是大数据量时会出现如上所述问题(可能是内部mysql多进程或多线程同时操作引起问题) ...

  5. 分支结构case 语句举例

  6. 最长上升子序列(LIS)长度及其数量

    例题51Nod-1376,一个经典问题,给出一个序列问该序列的LIS以及LIS的数量. 这里我学习了两种解法,思路和代码都是参考这两位大佬的: https://www.cnblogs.com/reve ...

  7. mocha.js

    mocha 如果你听说过“测试驱动开发”(TDD:Test-Driven Development),单元测试就不陌生. 单元测试是用来对一个模块.一个函数或者一个类来进行正确性检验的测试工作. 比如对 ...

  8. ofbiz:找不到org.ofbiz.widget.ContentWorkerInterface的类文件

    ofbiz编译报错: 找不到org.ofbiz.widget.DataResourceWorkerInterface的类文件 找不到org.ofbiz.widget.ContentWorkerInte ...

  9. UNP学习 广播

    一.概述 虽然UDP支持各种形式的地址,但TCP只支持单播地址. 上图要点是: IPv4对多播的支持是可选的,而IPv6则时必须的. IPv6没有提供对广播的支持:当使用广播的IPv4应用程序一直到I ...

  10. 接口测试——postman安装

    http://www.jianshu.com/p/dd0db1b13cfc postman的视频终于过审了,https://ke.qq.com/course/229839#tuin=1eb87ef,大 ...