引言

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。

基于ZooKeeper分布式锁的流程

  • 在zookeeper指定节点(locks)下创建临时顺序节点node_n
  • 获取locks下所有子节点children
  • 对子节点按节点自增序号从小到大排序
  • 判断本节点是不是第一个子节点,若是,则获取锁;若不是,则监听比该节点小的那个节点的删除事件
  • 若监听事件生效,则回到第二步重新进行判断,直到获取到锁

具体实现

下面就具体使用java和zookeeper实现分布式锁,操作zookeeper使用的是apache提供的zookeeper的包。

  • 通过实现Watch接口,实现process(WatchedEvent event)方法来实施监控,使CountDownLatch来完成监控,在等待锁的时候使用CountDownLatch来计数,等到后进行countDown,停止等待,继续运行。
  • 以下整体流程基本与上述描述流程一致,只是在监听的时候使用的是CountDownLatch来监听前一个节点。

分布式锁

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat; import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock; /**
* Created by liuyang on 2017/4/20.
*/
public class DistributedLock implements Lock, Watcher {
private ZooKeeper zk = null;
// 根节点
private String ROOT_LOCK = "/locks";
// 竞争的资源
private String lockName;
// 等待的前一个锁
private String WAIT_LOCK;
// 当前锁
private String CURRENT_LOCK;
// 计数器
private CountDownLatch countDownLatch;
private int sessionTimeout = 30000;
private List<Exception> exceptionList = new ArrayList<Exception>(); /**
* 配置分布式锁
* @param config 连接的url
* @param lockName 竞争资源
*/
public DistributedLock(String config, String lockName) {
this.lockName = lockName;
try {
// 连接zookeeper
zk = new ZooKeeper(config, sessionTimeout, this);
Stat stat = zk.exists(ROOT_LOCK, false);
if (stat == null) {
// 如果根节点不存在,则创建根节点
zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
} // 节点监视器
public void process(WatchedEvent event) {
if (this.countDownLatch != null) {
this.countDownLatch.countDown();
}
} public void lock() {
if (exceptionList.size() > 0) {
throw new LockException(exceptionList.get(0));
}
try {
if (this.tryLock()) {
System.out.println(Thread.currentThread().getName() + " " + lockName + "获得了锁");
return;
} else {
// 等待锁
waitForLock(WAIT_LOCK, sessionTimeout);
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
} public boolean tryLock() {
try {
String splitStr = "_lock_";
if (lockName.contains(splitStr)) {
throw new LockException("锁名有误");
}
// 创建临时有序节点
CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0],
ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
System.out.println(CURRENT_LOCK + " 已经创建");
// 取所有子节点
List<String> subNodes = zk.getChildren(ROOT_LOCK, false);
// 取出所有lockName的锁
List<String> lockObjects = new ArrayList<String>();
for (String node : subNodes) {
String _node = node.split(splitStr)[0];
if (_node.equals(lockName)) {
lockObjects.add(node);
}
}
Collections.sort(lockObjects);
System.out.println(Thread.currentThread().getName() + " 的锁是 " + CURRENT_LOCK);
// 若当前节点为最小节点,则获取锁成功
if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) {
return true;
} // 若不是最小节点,则找到自己的前一个节点
String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1);
WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
return false;
} public boolean tryLock(long timeout, TimeUnit unit) {
try {
if (this.tryLock()) {
return true;
}
return waitForLock(WAIT_LOCK, timeout);
} catch (Exception e) {
e.printStackTrace();
}
return false;
} // 等待锁
private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException {
Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true); if (stat != null) {
System.out.println(Thread.currentThread().getName() + "等待锁 " + ROOT_LOCK + "/" + prev);
this.countDownLatch = new CountDownLatch(1);
// 计数等待,若等到前一个节点消失,则precess中进行countDown,停止等待,获取锁
this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS);
this.countDownLatch = null;
System.out.println(Thread.currentThread().getName() + " 等到了锁");
}
return true;
} public void unlock() {
try {
System.out.println("释放锁 " + CURRENT_LOCK);
zk.delete(CURRENT_LOCK, -1);
CURRENT_LOCK = null;
zk.close();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
} public Condition newCondition() {
return null;
} public void lockInterruptibly() throws InterruptedException {
this.lock();
} public class LockException extends RuntimeException {
private static final long serialVersionUID = 1L;
public LockException(String e){
super(e);
}
public LockException(Exception e){
super(e);
}
}
}
测试代码
public class Test {
static int n = 500; public static void secskill() {
System.out.println(--n);
} public static void main(String[] args) { Runnable runnable = new Runnable() {
public void run() {
DistributedLock lock = null;
try {
lock = new DistributedLock("127.0.0.1:2181", "test1");
lock.lock();
secskill();
System.out.println(Thread.currentThread().getName() + "正在运行");
} finally {
if (lock != null) {
lock.unlock();
}
}
}
}; for (int i = 0; i < 10; i++) {
Thread t = new Thread(runnable);
t.start();
}
}
}

运行结果:

总体来说,如果了解到整个实现流程,使用zookeeper实现分布式锁并不是很困难,不过这也只是一个简单的实现,与前面实现Redis实现相比,本实现的稳定性更强,这是因为zookeeper的特性所致,在外界看来,zookeeper集群中每一个节点都是一致的。

完整代码可以在我的GitHub中查看:https://github.com/hongmoshui/DistributedLock

原文链接:https://www.cnblogs.com/liuyang0/p/6800538.html

分布式锁的实现【基于ZooKeeper】的更多相关文章

  1. 分布式锁(3) ----- 基于zookeeper的分布式锁

    分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...

  2. 分布式锁与实现--基于ZooKeeper实现

    引言 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提 ...

  3. 分布式锁(2) ----- 基于redis的分布式锁

    分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...

  4. 分布式锁用Redis还是ZooKeeper?(转载)

    文章系网络转载,侵删. 来源:https://zhuanlan.zhihu.com/p/73807097 为什么用分布式锁?在讨论这个问题之前,我们先来看一个业务场景. 图片来自 Pexels 为什么 ...

  5. 分布式锁用Redis与Zookeeper的使用

    为什么用分布式锁?   在讨论这个问题之前,我们先来看一个业务场景: 系统A是一个电商系统,目前是一台机器部署,系统中有一个用户下订单的接口,但是用户下订单之前一定要去检查一下库存,确保库存足够了才会 ...

  6. 分布式锁(一) Zookeeper分布式锁

    什么是Zookeeper? Zookeeper(业界简称zk)是一种提供配置管理.分布式协同以及命名的中心化服务,这些提供的功能都是分布式系统中非常底层且必不可少的基本功能,但是如果自己实现这些功能而 ...

  7. 服务注册发现consul之四: 分布式锁之四:基于Consul的KV存储和分布式信号量实现分布式锁

    一.基于key/value实现 我们在构建分布式系统的时候,经常需要控制对共享资源的互斥访问.这个时候我们就涉及到分布式锁(也称为全局锁)的实现,基于目前的各种工具,我们已经有了大量的实现方式,比如: ...

  8. 分布式锁中的基于redis的setnx的原理以及set和setnx的区别是什么

    基于Redis实现分布式锁.虽然网上介绍的Redis分布式锁博客比较多,却有着各种各样的问题,本篇博客将详细介绍如何正确地使用setnx实现Redis分布式锁 这里就不介绍错误的示范了 大家直接看正确 ...

  9. 分布式锁为什么要选择Zookeeper而不是Redis?

    在分布式的应用中,为了防止单点故障,保障高可用,通常会采用主从结构,当主节点挂掉后,从节点可以代替主节点提供服务. Redis通过复制 + sentinel哨兵来实现主从模式. Zookeeper通过 ...

  10. 分布式锁之二:zookeeper分布式锁2

    示例: package com.util; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.zoo ...

随机推荐

  1. Twice Equation

    题目链接:https://nanti.jisuanke.com/t/A1541 题意:给你一个L,要你求一个不小于L的最小数字n,对于一个整数m,满足2*(m+1)*m=n*(n+1). 思路:打表找 ...

  2. python3.0笔记

    python文件头 #!/usr/bin/env python # -*- coding: utf- -*- ''' Created on 2017年5月9日 @author: Administrat ...

  3. Kaggle 房价预测问题参考资料

    作者的 Kaggle 主页:https://www.kaggle.com/pavansanagapati Tutorial - Housing Prices Model Prediction http ...

  4. Java数据结构与算法(2):栈

    栈是一种线性表,特点在于它只能在一个位置上进行插入和删除,该位置是表的末端,叫做栈的顶(top).因此栈是后进先出的(FIFO).栈的基本操作有push.peek.pop. 栈的示意图 进栈和出栈都只 ...

  5. 《SQL Server 2012 T-SQL基础》读书笔记 - 5.表表达式

    Chapter 5 Table Expressions 一个表表达式(table expression)是一个命名的查询表达式,代表一个有效的关系表.SQL Server包括4种表表达式:派生表(de ...

  6. 用Vue来实现音乐播放器(五):路由配置+顶部导航栏组件开发

    路由配置 在router文件夹下的index.js中配置路由 import Vue from 'vue' import Router from 'vue-router'//配置路由前先引入组件impo ...

  7. git 还原、恢复、回退

    通过git revert来实现线主干代码的回滚.如下命令 对于 merge类型的commit对象,还需要"-m"参数 git revert -m 1  commit-id 对于普通 ...

  8. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第6节 static静态_14_静态static的内存图

    输出room的时候,推荐用类名称点的形式 方法区内有,有个独立的空间叫做静态区,专门用来存储静态static的数据 下图红色箭头的部分,全程和对象没有关系.

  9. 操作excel--xlwt/xlrd/xlutils模块

    一.写Excel (导入xlwt模块)需求:只要你传入一个表名,就能把所有的数据导入出来写入excel,字段名是excel的表头分析: 1.要动态获取到表的字段 cur.description能获取到 ...

  10. VUe.js 父组件向子组件中传值及方法

    父组件向子组件中传值 1.  Vue实例可以看做是大的组件,那么在其内部定义的私有组件与这个实例之间就出现了父子组件的对应关系. 2. 父子组件在默认的情况下,子组件是无妨访问到父组件中的数据的,所以 ...