D. Powerful array
time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of products Ks·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input

First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output

Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).

Examples
input
3 2
1 2 1
1 2
1 3
output
3
6
input
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
output
20
20
20
Note

Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):

Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.

题意:

  给你一个序列an 。t次询问,问在[L, R] 的区间里面的值是多少。公式是:ai的个数的平方 * ai 的求和。具体看Note。

题解:

  这一题用莫队算法。如果做过小Z的袜子的话,这一题很简单,小Z的袜子是 ai个数的平方求和,这里就乘多了一个ai。

  巨坑:num[] 数组要用int 开,用long long开的话会被卡TLE。(很绝望,被卡了10次罚时,最后用输入挂才过的)

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
using namespace std;
typedef long long LL;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
const LL INF = 0x7fffffff;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+;
const int maxn = +; template<class T>
inline bool scan_d(T &ret){
char c;int sgn;
if(c=getchar(), c==EOF) return ;
while(c!='-'&&(c<''||c>'')) c = getchar();
sgn=(c=='-')?-:;
ret=(c=='-')?:(c-'');
while(c=getchar(), c>=''&&c<='') ret = ret*+(c-'');
ret*=sgn;
return ;
}
inline void out(LL x)
{
if(x>) out(x/);
putchar(x%+'');
} int a[maxn];
int unit, n, t;
LL ans[maxn];
int num[maxn]; struct node
{
int l, r, id;
}que[maxn];
void init() {
ms(num, );
}
bool cmp(node x1, node x2)
{
if(x1.l/unit != x2.l/unit){
return x1.l/unit < x2.l/unit;
}
else{
return x1.r < x2.r;
}
}
void work()
{
sort(que, que+t, cmp);
LL temp = ;
int l, r;
l = , r = ;
for(int i =;i<t;i++){
while(r<que[i].r){
r++;
temp -= 1LL*num[a[r]]*num[a[r]]*a[r];
num[a[r]]++;
temp += 1LL*num[a[r]]*num[a[r]]*a[r];
}
while(r>que[i].r){
temp -= 1LL*num[a[r]]*num[a[r]]*a[r];
num[a[r]]--;
temp += 1LL*num[a[r]]*num[a[r]]*a[r];
r--;
}
while(l>que[i].l){
l--;
temp -= 1LL*num[a[l]]*num[a[l]]*a[l];
num[a[l]]++;
temp += 1LL*num[a[l]]*num[a[l]]*a[l];
}
while(l<que[i].l){
temp -= 1LL*num[a[l]]*num[a[l]]*a[l];
num[a[l]]--;
temp += 1LL*num[a[l]]*num[a[l]]*a[l];
l++;
}
ans[que[i].id] = temp;
}
}
void solve() {
// scanf("%d%d", &n, &t);
scan_d(n);scan_d(t);
for(int i = ;i<=n;i++)
scan_d(a[i]);
unit = (int)sqrt(n);
for(int i = ;i<t;i++){
que[i].id = i;
// scanf("%d%d", &que[i].l, &que[i].r);
scan_d(que[i].l);
scan_d(que[i].r);
}
work();
for(int i = ;i<t;i++){
// cout << ans[i] << endl;
// printf("%I64d\n", ans[i]);
out(ans[i]);
puts("");
}
}
int main() {
#ifdef LOCAL
freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
// ios::sync_with_stdio(0);
// cin.tie(0);
init();
solve();
return ;
}

Codeforces 86D Powerful array (莫队)的更多相关文章

  1. Codeforces 86D - Powerful array(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/86/D 题目大意:给定一个数组,每次询问一个区间[l,r],设cnt[i]为数字i在该区间内的出现次数,求 ...

  2. CodeForces - 86D Powerful array (莫队)

    题意:查询的是区间内每个数出现次数的平方×该数值的和. 分析:虽然是道莫队裸体,但是姿势不对就会超时.答案可能爆int,所以要开long long 存答案.一开始的维护操作,我先在res里减掉了a[p ...

  3. Codeforces 86D Powerful array (莫队算法)

    题目链接 Powerful array 给你n个数,m次询问,Ks为区间内s的数目,求区间[L,R]之间所有Ks*Ks*s的和. $1<=n,m<=200000,   1<=s< ...

  4. CodeForces 86D Powerful array(莫队+优化)

    D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input standard i ...

  5. CodeForces - 86D D. Powerful array —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/86/D D. Powerful array time limit per test 5 seconds m ...

  6. codeforces 86D,Powerful array 莫队

    传送门:https://codeforces.com/contest/86/problem/D 题意: 给你n个数,m次询问,每次询问问你在区间l,r内每个数字出现的次数的平方于当前这个数的乘积的和 ...

  7. codeforces 86D D. Powerful array(莫队算法)

    题目链接: D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input stan ...

  8. CodeForces 86 D Powerful array 莫队

    Powerful array 题意:求区间[l, r] 内的数的出现次数的平方 * 该数字. 题解:莫队离线操作, 然后加减位置的时候直接修改答案就好了. 这个题目中发现了一个很神奇的事情,本来数组开 ...

  9. codeforces 86D : Powerful array

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

随机推荐

  1. JQ判断div是否隐藏

    1. $("#tanchuBg").css("display")   2. $("#tanchuBg").is(":visible ...

  2. 前端 CSS 盒子模型

    盒模型的概念 在CSS中,"box model"这一术语是用来设计和布局时使用,然后在网页中基本上都会显示一些方方正正的盒子.我们称为这种盒子叫盒模型. 盒模型有两种:标准模型和I ...

  3. lesson2-完全图、补图和顶点度

    (一).完全图.偶图与补图 1.每两个不同的顶点之间都有一条边相连的简单图称为完全图 (complete graph).在同构意义下,n个顶点的完全图只有一个,记为 2.所谓具有二分类(X, Y)的偶 ...

  4. Mac下安装配置gradle

    1.下载gradle2.解压3.获得gradle解压后的路径4.修改.bash_profile文件,配置环境变量 vi ~./bash_profile export GRADLE_HOME=/User ...

  5. (六:NIO系列) 相关设计模式

    出处:  反应器模式 vs 观察者模式  反应器模式 vs 生产者消费者模式 反应器模式 vs 观察者模式 反应器模式 是一种为处理服务请求并发提交到一个或者多个服务处理程序的事件设计模式.当请求抵达 ...

  6. SQL在Oracle内部的具体处理流程

         下图显示了SQL在Oracle内部处理的一般阶段:解析.优化.产生行源和执行.数据库可能会忽略某些步骤,这取决于具体的语句.                                 ...

  7. JVM Heap Memory和Native Memory

    JVM管理的内存可以总体划分为两部分:Heap Memory和Native Memory.前者我们比较熟悉,是供Java应用程序使用的:后者也称为C-Heap,是供JVM自身进程使用的.Heap Me ...

  8. How to compile and install Linux Kernel 5.1.2 from source code

    How to compile and install Linux Kernel 5.1.2 from source code Compiling a custom kernel has its adv ...

  9. leetcode69. x 的平方根 🌟

    题目: 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: 4 输出: 2 ...

  10. 五、Ubuntu 16.04 安装PyCharm

    方法一,在终端用指令通过第三方源安装pycharm. 本文通过第三方源安装PyCharm,好处是升级方便. 添加源:    $ sudo add-apt-repository ppa:mystic-m ...