Python中的四种数据结构
Python中的内置数据结构(Built-in Data Structure):列表list、元组tuple、字典dict、集合set,涵盖的仅有部分重点。
目录:
一、列表list
list的显著特征:
- 列表中的每个元素都可变的,意味着可以对每个元素进行修改和删除;
- 列表是有序的,每个元素的位置是确定的,可以用索引去访问每个元素;
- 列表中的元素可以是Python中的任何对象;
- 可以为任意对象就意味着元素可以是字符串、整数、元组、也可以是list等Python中的对象。
----数据操作:
1、直接创建列表
mylist = ['Google', 'Yahoo', 'Baidu']
2、对列表中的指定位置变更数据
mylist = ['Google', 'Yahoo', 'Baidu'] #变更索引位置1Yahoo的内容为Microsoft
mylist[1] = 'Microsoft' #运行结果: ['Google', 'Microsoft', 'Baidu']
3、在列表后面追加元素
mylist.append('Alibaba') #运行结果: ['Google', 'Microsoft', 'Baidu', 'Alibaba']
4、在指定位置插入元素
mylist.insert(1, 'Tencent') # ['Google', 'Tencent', 'Microsoft', 'Baidu', 'Alibaba']
5、删除元素
mylist = ['Google', 'Tencent', 'Microsoft', 'Baidu', 'Alibaba'] # 删除尾部元素
mylist.pop() # 会返回被删除元素
# 删除指定位置的元素
mylist.pop(1) # 删除索引为1的元素,并返回删除的元素 mylist.remove('Microsoft') #删除列表中的Microsoft del mylist[1:3] #删除列表中索引位置1到位置 3 的数据
6、替换元素
mylist[0] = 'Baidu'
mylist[1] = ['python', 'java', 'php'] # 集合的数据类型可以不同,也可以是集合
7、列表排序
mylist = [1, 2, 5, 4]
mylist.sort() # [1, 2 ,4, 5]
如果列表里面是字母,则根据Ascii码来排序
8、获取列表长度
mylist = [1, 2, 5, 4]
len(mylist)
9、获取列表指定位置的数据
mylist = ['Google', 'Tencent', 'Microsoft', 'Baidu', 'Alibaba','Sina']
#获取索引位置1的数据
mylist[1] #'Tencent'
#获取索引位置1到5的数据,注意这里只会取到索引位置4,这里叫做取头不取尾
mylist[1:5] # 'Tencent', 'Microsoft', 'Baidu', 'Alibaba'
#获取从最头到索引位置5的数据
mylist[ :5] #'Google', 'Tencent', 'Microsoft', 'Baidu', 'Alibaba' #获取从索引位置2开到最后的数据
mylist[2:] #'Microsoft', 'Baidu', 'Alibaba','Sina'
10、用循环来创建列表
a = [1,2,3,4,5,6]
#在a的数据基础上每个数据乘以10,再生成一个列表b,
b = [i*10 for i in a]
print(a)
print(b) #运行结果如下:
# [1, 2, 3, 4, 5, 6]
# [10, 20, 30, 40, 50, 60]
11、过滤列表中的内容放入新的列表中
#生成一个从1到20的列表 a = [x for x in range(1,20)] #把a中所有偶数生成一个新的列表b b = [m for m in a if m % 2 == 0] print(b) #运行结果如下:
# [2, 4, 6, 8, 10, 12, 14, 16, 18]
12、嵌套式生成列表
#生成一个列表a
a = [i for i in range(1,4)]
print(a) #生成一个列表b
b = [i for i in range(100,400) if i % 100 == 0]
print(b) # 嵌套式
c = [m+n for m in a for n in b]
print(c) #运行结果:
# [1, 2, 3]
# [100, 200, 300]
# [101, 201, 301, 102, 202, 302, 103, 203, 303]
Python中包含6中內建的序列:列表,元组,字符串、Unicode字符串、buffer对象和xrange对象。
----list函数
>>> list("Hello world")
['H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
可以通过list将序列创建为列表。
其实list为一种类型并非函数,但此处二者并无多大区别。下面的tuple、dict也是如此。
二、元组tuple
重点:元组Tuple,用法与List类似,但Tuple一经初始化,就不能修改,没有List中的append(), insert(), pop()等修改的方法,只能对元素进行查询
下面看个例子来证实一下我们说的:
>>> a = (1,2,3,4)
>>> a
(1, 2, 3, 4)
>>> print(type(a))
<class 'tuple'>
>>> a[1]=5
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
a[1]=5
TypeError: 'tuple' object does not support item assignment
>>> a[1:1] = 5
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
a[1:1] = 5
TypeError: 'tuple' object does not support item assignment
>>> a[1]
2
从上面的例子,证实了tuple不支持对元素的修改(包括删除),tuple一初始化便固定下来了。
再来看一个例子:
>>> a = ('a','b',['A','B'])
>>> print(type(a)) #检测a的数据类型是什么
<class 'tuple'> #检测出a的类型是元组tuple
>>> print(a)
('a', 'b', ['A', 'B'])
>>> a[2][0] = 'X' #尝试变更数据,成功了,为什么?
>>> a[2][1] = 'y'
>>> print(a) #打印出变更后的内容
('a', 'b', ['X', 'y'])
>>> print(type(a[2])) #检测a的数据类型是什么
<class 'list'> #检测出a[2]的类型是list
这里看似元素中的元素改变了,可是仔细分析下,元组中的第三个元素是一个列表。
代码4,5行改变的是列表中的值,元组所指的这个元素列表并没有改变,需要注意这点!
这就涉及到Python中的可变对象和不可变对象,像list这样的就是可变对象,tuple便是不可变对象。
元组是固定的列表,那么元组的意义何在呢?
因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple并且需要注意元组中元素的可变性!!
空的tuple可以记为(),若只有一个元素的tuple记为(1,)
t = (1,) # 如果需要是Tuple,就必须加上逗号,否则变成成了数字1了
# 这里如果没有“,”就变成了“(1)”
因为记为(1)的话,这个实际代表的是数字1,此时()是数学公式中的小括号
因为元组是固定的列表,所以其内置的大多数的方法和列表是差不多的。
可以通过tuple将序列转换为元组,用法和list一样
>>> tuple('Hello,world!')
('H', 'e', 'l', 'l', 'o', ',', 'w', 'o', 'r', 'l', 'd', '!')
三、字典dict(dictionary)
字典dictionary全称这个概念就是基于现实生活中的字典原型,生活中的使用名称-内容对数据进行构建,Python中使用键(key)-值(value)存储,也就是java、C++中的map。
dict的显著特征:
- 字典中的数据必须以键值对的形式出现,即k,v:
key:必须是可哈希的值,比如intmstring,float,tuple,但是,list,set,dict不行
value:任何值
- 键不可重复,值可重复
键若重复字典中只会记该键对应的最后一个值
- 字典中键(key)是不可变的,何为不可变对象,不能进行修改;而值(value)是可以修改的,可以是任何对象。
在dict中是根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。
----字典生成创建方式
#创建空字典1 d = {}
print(d) #创建空字典2
d = dict() #直接赋值方式 d = {"one":1,"two":2,"three":3,"four":4} #常规字典生成式 dd = {k:v for k,v in d.items()}
print(dd) #加限制条件的字典生成方式 ddd = {k:v for k,v in d.items() if v % 2 ==0}
print(ddd)
----字典的常见操作_____访问、删除、变更字典里面的内容
#访问字典中的数据
d = {"one":1,"two":2,"three":3,"four":4}
print(d["one"])
#变更字典里面的数据
d["one"] = "eins"
print(d) #删除一个数据,使用del
del d["one"]
print(d) #运行结果如下:
1
{'one': 'eins', 'two': 2, 'three': 3, 'four': 4}
{'two': 2, 'three': 3, 'four': 4}
----字典中成员检测
d = {"one":1,"two":2,"three":3,"four":4} if 2 in d:
print("value") if "two" in d:
print("key") if ("two",2) in d:
print("kv")
----使用for循环访问字典
d = {"one":1,"two":2,"three":3,"four":4}
#使用for循环,直接按key值访问 for k in d:
print(k,d[k]) #上述代码也可以写成如下 for k in d.keys():
print(k,d[k]) #只访问字典的值 for v in d.values():
print(v) #以下是特殊用法 for k,v in d.items():
print(k,'--->',v)
----字典相关函数
通用函数:len,max,min,dict
d = {"one":1,"two":2,"three":3,"four":4}
print(max(d))
print(min(d))
print(len(d))
dict() 函数的使用方法:
dict0 = dict() # 传一个空字典
print('dict0:', dict0) dict1 = dict({'three': 3, 'four': 4}) # 传一个字典
print('dict1:', dict1) dict2 = dict(five=5, six=6) # 传关键字
print('dict2:', dict2) dict3 = dict([('seven', 7), ('eight', 8)]) # 传一个包含一个或多个元祖的列表
print('dict3:', dict3) dict5 = dict(zip(['eleven', 'twelve'], [11, 12])) # 传一个zip()函数
print('dict5:', dict5)
str(字典):返回字典的字符串格式
d = {"one":1,"two":2,"three":3,"four":4} print(str(d))
clear:清空字典
items:返回字典的键值对组成的元组格式
d = {"one":1,"two":2,"three":3,"four":4} i = d.items()
print(type(i))
print(i) d.clear()
print(d)
keys:返回字典的键组成的一个结构
d = {"one":1,"two":2,"three":3,"four":4}
k = d.keys()
print(type(k))
print(k)
values:返回字典的值组成的一个结构
d = {"one":1,"two":2,"three":3,"four":4}
v = d.values()
print(type(v))
print(v)
get:根据制定键返回相应的值,好处是可以设置默认值
d = {"one":1,"two":2,"three":3,"four":4} print(d.get("one333")) #get默认值是None,可以设置
print(d.get("one",100))
print(d.get("one222",100))
fromkeys:使用指定的序列作为键,使用一个值作为字典的所有的键的值
p = ["one","two","three","four",]
#注意fromkeys两个参数的类型
#注意fromkeys的调用主体
d = dict.fromkeys(p,"")
print(d)
四、集合set
- 集合更接近数学上集合的概念。集合中每个元素都是无序的、不重复的任意对象。
- 可以通过集合去判断数据的从属关系,也可以通过集合把数据结构中重复的元素减掉。集合可做集合运算,可添加和删除元素。
- 集合内数据无序,即无法使用索引和分片
- 集合内部数据元素具有唯一性,可以用来排除重复数据
- 集合内的数据:str,int,float,tuple,冰冻集合等,即内部只能放置可哈希数据
----集合的定义
#集合的定义,set()
s = set()
print(type(s))
print(s) #也可以像下面这样做,大括号内一定要有值,否则定义出的将是一个dict
s = {1,2,3,4,5,6,7}
print(s)
创建集合时需要用list作为输入集合,可通过add()方法增加元素,remove()方法删除元素
s = set([1,2,3])
s.add(6)
s.remove(2)
集合的内涵
普通集合内涵
--------以下集合会在初始化后自动过滤掉重复元素
s = {33,1,33,6,9,126,8,6,3,77,88,99,126}
print(s)
普通循环集合内涵
s = {33,1,33,6,9,126,8,6,3,77,88,99,126}
ss = {i for i in s}
print(ss)
带条件的集合内涵
s = {33,1,33,6,9,126,8,6,3,77,88,99,126}
sss = {i for i in s if i % 2 ==0}
print(sss)
多循环集合的内涵
s1 = {1,2,3,4}
s2 = {"nice","to","meet","you"} s = {m*n for m in s2 for n in s1}
print(s)
----集合函数
- intersection:交集
- difference:差集
- union:并集
- issubset:检查一个集合是否为另一个子集
- issuperset:检查一个集合是否为另一个超集
通过代码来看区别:
s1 = {1,2,3,4,5,6,7}
s2 = {5,6,7,8,9} #交集
s_1 = s1.intersection(s2)
print("交集:",s_1) #差集
s_2 = s1.difference(s2)
print("差集:",s_2) #并集
s_3 = s1.union(s2)
print("并集:",s_3) #检查一个集合是否为另一个子集
s_4 = s1.issubset(s2)
print("检查子集结果:",s_4) #检查一个集合是否为另一个超集
s_5 = s1.issuperset(s2)
print("检查超集结果:",s_5)
这里是运行结果:
交集: {5, 6, 7}
差集: {1, 2, 3, 4}
并集: {1, 2, 3, 4, 5, 6, 7, 8, 9}
检查子集结果: False
检查超集结果: False
frozen set:冰冻集合
- 冰冻集合是不可以进行任何修改的集合
- frozenset是一种特殊集合
创建冰冻集合的方式:
s = frozenset()
每天进步一点点,不要停止前进的脚步
Python中的四种数据结构的更多相关文章
- Python中的三种数据结构
Python中,有3种内建的数据结构:列表.元组和字典.1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目.列表中的项目.列表中的项目应该包括在方括号中,这 ...
- Python中的四种交换数值的方法
交换两个变量的值方法,这个面试题如果只写一种当然很简单,没什么可以说的. 今天这个面试是问大家有几种办法来实现交换两个变量的值. 在没开始看具体答案前,你可以先想想看 下面分别来说说这几种方法 方法一 ...
- Python学习(四)数据结构(概要)
Python 数据结构 本章介绍 Python 主要的 built-type(内建数据类型),包括如下: Numeric types int float Text Sequence ...
- c++中的四种智能指针
c++中的四种智能指针 写惯了python,golang再来写c++总觉得头大,很大一个原因就是他没有一个GC机制. 不过c++中提供了智能指针,也不是不能用,李姐万岁! auto_ptr, shar ...
- 简单谈谈Python中的几种常见的数据类型
简单谈谈Python中的几种常见的数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等 ...
- 对称加密和分组加密中的四种模式(ECB、CBC、CFB、OFB)
一. AES对称加密: AES加密 分组 二. 分组密码的填充 分组密码的填充 e.g.: PKCS#5填充方式 三. 流密码: 四. 分组密码加密中的四种模式: 3.1 ECB模式 优点: 1. ...
- JAVA基础学习之throws和throw的区别、Java中的四种权限、多线程的使用等(2)
1.throws和throw的区别 throws使用在函数外,是编译时的异常,throw使用在函数内,是运行时的异常 使用方法 public int method(int[] arr) throws ...
- Activity中的四种启动模式
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作.在Android中Activity的启动模式决定了Activity的启动运行方式. An ...
- C++中的四种转型操作符
在具体介绍C++中的四种转型操作符之前,我们先来说说旧式转型的缺点: ①它差点儿同意将不论什么类型转换为不论什么其它类型,这是十分拙劣的.假设每次转型都可以更精确地指明意图,则更好. ②旧式转型难以辨 ...
随机推荐
- Redis的一点笔记
Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 优势: 性能极高 – Redis能读的速度是110000次/s,写的速度是81000次/s . 丰富 ...
- summernote(富文本编辑器)将附件与图片上传到自己的服务器(vue项目)
1.上传图片至自己的服务器(这个官方都有例子,重点介绍附件上传)图片上传官方网址 // onChange callback $('#summernote').summernote({ callback ...
- RocketMQ存储系统概要设计和源码解读
普遍消息存储技术的选型 分布式KV存储 NewSQL存储:TiDB 文件系统:RocketMQ,kafka,RabbitMQ RocketMQ:所有的message存储在一个log里,不区分topic ...
- 《统计学习方法(李航)》讲义 第03章 k近邻法
k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法.本书只讨论分类问题中的k近邻法.k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类 ...
- ActiveMQ 初学-1:ActiveMQ 创建连接对象
县创建mq的连接工厂对象 ActiveMQConnectionFactory // 1 建立ConnectionFactory 工厂对象,需要填入,需要填入用户名密码, // 用户名 密码 在 ...
- Gson解析list类型的json串
Gson gson = new Gson(); Type type = new TypeToken<List<Object>>() {}.getType(); List< ...
- 快读模板&&快出模板
inline int read() { ,b=; char c=getchar(); ') { if(c=='-') b=-; c=getchar(); } ') { a=(a<<)+(a ...
- Android 编程下Touch 事件的分发和消费机制和OnTouchListener,OnClickListener和OnLongClickListener的关系
1.事件分发:public boolean dispatchTouchEvent(MotionEvent ev) Touch 事件发生时 Activity 的 dispatchTouchEvent(M ...
- C++多重继承实践
实践代码如下: #include <iostream> using namespace std; class Animal { private: int hash; public: Ani ...
- Rate 评分
评分组件 基础用法 评分被分为三个等级,可以利用颜色对分数及情感倾向进行分级(默认情况下不区分颜色).三个等级所对应的颜色用过colors属性设置,而它们对应的两个阈值则通过 low-threshol ...