[CTS2019]氪金手游

各种情况加在一起

先考虑弱化版:外向树,wi确定

i合法的概率就是wi/sw sw表示子树的w的和,和子树外情况无关

这些概率乘起来就是最终合法的概率

如果都是外向树,

f[i][j]i为根子树,sw=j的所有wi出现方案下的合法概率和

背包

有反向边?

直接处理满足很难,子树内外有先后顺序

容斥!不满足+随意

不满足只要转移的时候乘上-1

随意就是断开这条边不考虑.

所以f[i][j]定义是:i为根子树的连通块sw=j,所有情况的合法概率乘上(-1)^|S|的和

注意统计答案,由于j是相连的size,从1~3*n都有意义

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
il int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
il int sub(int x,int y){return ad(x,mod-y);}
il int mul(int x,int y){return (ll)x*y%mod;}
il void inc(int &x,int y){x=ad(x,y);}
il void inc2(int &x,int y){x=mul(x,y);}
il int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
template<class ...Args>il int ad(const int a,const int b,const Args &...args) {return ad(ad(a,b),args...);}
template<class ...Args>il int mul(const int a,const int b,const Args &...args) {return mul(mul(a,b),args...);}
}
using namespace Modulo;
namespace Miracle{
const int N=;
int n;
int p[N][];
struct node{
int nxt,to;
int val;
}e[*N];
int hd[N],cnt;
void add(int x,int y,int c){
e[++cnt].nxt=hd[x];
e[cnt].to=y;e[cnt].val=c;
hd[x]=cnt;
}
int f[N][];
int g[];
int sz[N];
int ni[*N];
void dfs(int x,int fa){
f[x][]=;
sz[x]=;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
dfs(y,x);
if(e[i].val==){
for(reg j=*sz[x];j>=;--j){
for(reg k=*sz[y];k>=;--k){
inc(f[x][j+k],mul(f[x][j],f[y][k]));
}
f[x][j]=;
}
}else{
for(reg j=*sz[x];j>=;--j){
int tot=;
int v=f[x][j];
for(reg k=*sz[y];k>=;--k){
inc(f[x][j+k],mul(mod-,f[x][j],f[y][k]));
inc(tot,f[y][k]);
}
f[x][j]=;
inc(f[x][j],mul(v,tot));
}
}
sz[x]+=sz[y];
}
++sz[x];
memset(g,,sizeof g);
for(reg i=*sz[x];i>=;--i){
for(reg j=;j<=&&i-j>=;++j){
inc(g[i],mul(p[x][j],j,ni[i],f[x][i-j]));
}
}
memcpy(f[x],g,sizeof g);
}
int main(){
rd(n);
int a1,a2,a3;
ni[]=;
for(reg i=;i<=*n;++i) {
ni[i]=mul(mod-mod/i,ni[mod%i]);
} for(reg i=;i<=n;++i){
rd(a1);rd(a2);rd(a3);int tot=qm(ad(a1,a2,a3));
p[i][]=mul(a1,tot),p[i][]=mul(a2,tot);
p[i][]=mul(a3,tot);
}
int x,y;
for(reg i=;i<n;++i){
rd(x);rd(y);
add(x,y,);add(y,x,-);
}
dfs(,);
int ans=;
for(reg j=;j<=*sz[];++j){
inc(ans,f[][j]);
}
cout<<ans;
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

一般情况:$\Pi wi/sw$

反向边?容斥

然后带着所有系数什么的一起DP

[CTS2019]氪金手游的更多相关文章

  1. LOJ3124 CTS2019 氪金手游 概率、容斥、树形DP

    传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求 ...

  2. 【题解】Luogu P5405 [CTS2019]氪金手游

    原题传送门 我们珂以先考虑一条链的情况,设\(sum\)为所有\(w_i\)的总和,\(Sw_i\)表示\(\sum_{j=i}^nw_i\) \[1 \rightarrow 2 \rightarro ...

  3. [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)

    先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...

  4. 题解-CTS2019氪金手游

    Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3 ...

  5. Luogu5405 CTS2019氪金手游(容斥原理+树形dp)

    考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥 ...

  6. p5405 [CTS2019]氪金手游

    题目大意 题意狗屁不通 看毛子语都比看这个题面强 分析 我们假设这棵树是一个内向树 那么我们可以轻易的得到dp[x][i]表示x点子树和为i的期望 转移只需枚举当前期望大小和子树期望大小即可 但是由于 ...

  7. [CTS2019]氪金手游(容斥+树形背包DP)

    降智好题.本蒟蒻VP时没想到怎么做被题面迷惑了,只会20分的“好”成绩.简直自闭了. 首先显然度为0的点是白给的,根据等比数列求和公式即可求得.然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己. ...

  8. Loj #3124. 「CTS2019 | CTSC2019」氪金手游

    Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...

  9. 【CTS2019】氪金手游(动态规划)

    [CTS2019]氪金手游(动态规划) 题面 LOJ 洛谷 题解 首先不难发现整个图构成的结构是一棵树,如果这个东西是一个外向树的话,那么我们在意的只有这棵子树内的顺序关系,子树外的关系与这棵子树之间 ...

随机推荐

  1. Python 入门 之 面向对象的三大特性(封装 / 继承 / 多态)

    Python 入门 之 面向对象的三大特性(封装 / 继承 / 多态) 1.面向对象的三大特性: (1)继承 ​ 继承是一种创建新类的方式,在Python中,新建的类可以继承一个或多个父类,父类又可以 ...

  2. 从尾到头打印列表——牛客剑指offer

    题目描述 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 解题思路 思路1: 顺序遍历链表,取出每个结点的数据,插入list中. 由于要求list倒序存储链表中的数据,而我们是顺序取 ...

  3. eclipse+maven搭建springboot项目入门

    一.下载jdk,例如(jdk1.8.171) 安装(注意仅仅安装jdk就可以了,不要安装jre,设置JAVA_HOME,配置jdk环境变量) 二.下载maven(apache-maven-3.5.3- ...

  4. js三级内联

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. sql--select into,create database,create table,Constraints

    SQL SELECT INTO 语句可用于创建表的备份复件.SELECT INTO 语句SELECT INTO 语句从一个表中选取数据,然后把数据插入另一个表中.SELECT INTO 语句常用于创建 ...

  6. wpf GridSplitter左右托不了或者拖拽异常

    对于水平分割线,需要将verticalAlignment属性设置为Center 对于垂直分割线,需要将horizontalAlignment属性设置为center 切记切记,不然很苦逼....

  7. 如何使用sftp下载Linux服务器上的文件到本地

    下载Linux服务器上的文件到本地 Linux服务器上的操作 sftp xxxxx@jumper.xxxx.com 使用put命令进行文件上传,put app.log 本地操作 sftp xxxxx@ ...

  8. CentOS7搭建FastDFS V5.11分布式文件系统(二)

    1.CentOS7 FastDFS搭建 前面已下载好了要用到的工具集,下面就可以开始安装了: 如果安装过程中出现问题,可以下载我提供的,当前测试可以通过的工具包: 点这里点这里 1.1 安装libfa ...

  9. Mysql检查列是否存在并新增、修改、删除列

    在MYSQL中,新增.修改.删除列时不能进行IF EXISTS判断,IF语句只能出现在存储过程当中,故博主用存储过程的方法新增.修改.删除列,修改列名称. DROP PROCEDURE IF EXIS ...

  10. 隔离技术线程池(ThreadPool)和信号量(semaphore)

    一.首先要明白Semaphore和线程池各自是干什么? 信号量Semaphore是一个并发工具类,用来控制可同时并发的线程数,其内部维护了一组虚拟许可,通过构造器指定许可的数量,每次线程执行操作时先通 ...