[CTS2019]氪金手游
各种情况加在一起
先考虑弱化版:外向树,wi确定
i合法的概率就是wi/sw sw表示子树的w的和,和子树外情况无关
这些概率乘起来就是最终合法的概率
如果都是外向树,
f[i][j]i为根子树,sw=j的所有wi出现方案下的合法概率和
背包
有反向边?
直接处理满足很难,子树内外有先后顺序
容斥!不满足+随意
不满足只要转移的时候乘上-1
随意就是断开这条边不考虑.
所以f[i][j]定义是:i为根子树的连通块sw=j,所有情况的合法概率乘上(-1)^|S|的和
注意统计答案,由于j是相连的size,从1~3*n都有意义
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
il int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
il int sub(int x,int y){return ad(x,mod-y);}
il int mul(int x,int y){return (ll)x*y%mod;}
il void inc(int &x,int y){x=ad(x,y);}
il void inc2(int &x,int y){x=mul(x,y);}
il int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
template<class ...Args>il int ad(const int a,const int b,const Args &...args) {return ad(ad(a,b),args...);}
template<class ...Args>il int mul(const int a,const int b,const Args &...args) {return mul(mul(a,b),args...);}
}
using namespace Modulo;
namespace Miracle{
const int N=;
int n;
int p[N][];
struct node{
int nxt,to;
int val;
}e[*N];
int hd[N],cnt;
void add(int x,int y,int c){
e[++cnt].nxt=hd[x];
e[cnt].to=y;e[cnt].val=c;
hd[x]=cnt;
}
int f[N][];
int g[];
int sz[N];
int ni[*N];
void dfs(int x,int fa){
f[x][]=;
sz[x]=;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
dfs(y,x);
if(e[i].val==){
for(reg j=*sz[x];j>=;--j){
for(reg k=*sz[y];k>=;--k){
inc(f[x][j+k],mul(f[x][j],f[y][k]));
}
f[x][j]=;
}
}else{
for(reg j=*sz[x];j>=;--j){
int tot=;
int v=f[x][j];
for(reg k=*sz[y];k>=;--k){
inc(f[x][j+k],mul(mod-,f[x][j],f[y][k]));
inc(tot,f[y][k]);
}
f[x][j]=;
inc(f[x][j],mul(v,tot));
}
}
sz[x]+=sz[y];
}
++sz[x];
memset(g,,sizeof g);
for(reg i=*sz[x];i>=;--i){
for(reg j=;j<=&&i-j>=;++j){
inc(g[i],mul(p[x][j],j,ni[i],f[x][i-j]));
}
}
memcpy(f[x],g,sizeof g);
}
int main(){
rd(n);
int a1,a2,a3;
ni[]=;
for(reg i=;i<=*n;++i) {
ni[i]=mul(mod-mod/i,ni[mod%i]);
} for(reg i=;i<=n;++i){
rd(a1);rd(a2);rd(a3);int tot=qm(ad(a1,a2,a3));
p[i][]=mul(a1,tot),p[i][]=mul(a2,tot);
p[i][]=mul(a3,tot);
}
int x,y;
for(reg i=;i<n;++i){
rd(x);rd(y);
add(x,y,);add(y,x,-);
}
dfs(,);
int ans=;
for(reg j=;j<=*sz[];++j){
inc(ans,f[][j]);
}
cout<<ans;
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/
一般情况:$\Pi wi/sw$
反向边?容斥
然后带着所有系数什么的一起DP
[CTS2019]氪金手游的更多相关文章
- LOJ3124 CTS2019 氪金手游 概率、容斥、树形DP
传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求 ...
- 【题解】Luogu P5405 [CTS2019]氪金手游
原题传送门 我们珂以先考虑一条链的情况,设\(sum\)为所有\(w_i\)的总和,\(Sw_i\)表示\(\sum_{j=i}^nw_i\) \[1 \rightarrow 2 \rightarro ...
- [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...
- 题解-CTS2019氪金手游
Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3 ...
- Luogu5405 CTS2019氪金手游(容斥原理+树形dp)
考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥 ...
- p5405 [CTS2019]氪金手游
题目大意 题意狗屁不通 看毛子语都比看这个题面强 分析 我们假设这棵树是一个内向树 那么我们可以轻易的得到dp[x][i]表示x点子树和为i的期望 转移只需枚举当前期望大小和子树期望大小即可 但是由于 ...
- [CTS2019]氪金手游(容斥+树形背包DP)
降智好题.本蒟蒻VP时没想到怎么做被题面迷惑了,只会20分的“好”成绩.简直自闭了. 首先显然度为0的点是白给的,根据等比数列求和公式即可求得.然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己. ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- 【CTS2019】氪金手游(动态规划)
[CTS2019]氪金手游(动态规划) 题面 LOJ 洛谷 题解 首先不难发现整个图构成的结构是一棵树,如果这个东西是一个外向树的话,那么我们在意的只有这棵子树内的顺序关系,子树外的关系与这棵子树之间 ...
随机推荐
- 这38个小技巧告诉你如何快速学习MySQL数据库2
1.如何快速掌握MySQL? ⑴培养兴趣兴趣是最好的老师,不论学习什么知识,兴趣都可以极大地提高学习效率.当然学习MySQL 5.6也不例外.⑵夯实基础计算机领域的技术非常强调基础,刚开始学习可能还认 ...
- 【Groovy】 Groovy笔记
一.简单了解Groovy Groovy简介: Groovy是基于JVM的敏捷开发语言,语法与Java类似,但更加简洁,容错性也比Java强,同时Java能非常好的契合(例如Groovy能够使用Java ...
- 问题:tomcat启动后,可以访问主页面,但是无法访问dubbo-admin
原因分析: 直接查看logs中的日志文件,发现一行 [Catalina-utility-1] org.apache.catalina.startup.HostConfig.undeploy Undep ...
- Go语法的基本使用(三)
// 长度 vs 容量. // 长度是目前里面有几个值 // 容量是最多能放多少个值 func main(){ var a =make(chan int,4) a<-1 a<-2 a< ...
- 配置Linux静态IP地址
- emwin之BUTTON控件显示位图和流位图出现卡顿延迟的情况
@2019-05-16 [问题] 参照Armfly的emwin教程第46章 BUTTON-按钮控件显示位图和流位图,实际使用时导致界面切换卡顿延迟较大的情况 [环境] F429IGT6 + W9825 ...
- Linux 权限和目录更改、移除、更换目录、列出目录内容、使用通配符、移动、重命名
12 chgrp :改变档案.目录所属群组 chgrp -R dirname/filename chown :改变档案/目录拥有者 chown -R 账 ...
- 第02章 新手必须掌握的 Linux 命令
- host文件介绍
默认位置为%SystemRoot%\system32\drivers\etc\,但也可以改变. 动态目录由注册表键\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSe ...
- oracle 数据库启动停止小结
---登录sqlplus sqlplus /nolog conn / as sysdba shutdown immediate --启动数据库有两种方式 startup 会自动完成重启数据库的所有步 ...