spark streaming 1: SparkContex
/**
* Main entry point for Spark Streaming functionality. It provides methods used to create
* [[org.apache.spark.streaming.dstream.DStream]]s from various input sources. It can be either
* created by providing a Spark master URL and an appName, or from a org.apache.spark.SparkConf
* configuration (see core Spark documentation), or from an existing org.apache.spark.SparkContext.
* The associated SparkContext can be accessed using `context.sparkContext`. After
* creating and transforming DStreams, the streaming computation can be started and stopped
* using `context.start()` and `context.stop()`, respectively.
* `context.awaitTransformation()` allows the current thread to wait for the termination
* of the context by `stop()` or by an exception.
*/
class StreamingContext private[streaming] (
sc_ : SparkContext,
cp_ : Checkpoint,
batchDur_ : Duration
) extends Logging {
private[streaming] val graph: DStreamGraph = {
if (isCheckpointPresent) {
cp_.graph.setContext(this)
cp_.graph.restoreCheckpointData()
cp_.graph
} else {
assert(batchDur_ != null, "Batch duration for streaming context cannot be null")
val newGraph = new DStreamGraph()
newGraph.setBatchDuration(batchDur_)
newGraph
}
}
private val nextReceiverInputStreamId = new AtomicInteger(0)
private[streaming] val scheduler = new JobScheduler(this)
private[streaming] val waiter = new ContextWaiter
private[streaming] val progressListener = new StreamingJobProgressListener(this)
/** Add a [[org.apache.spark.streaming.scheduler.StreamingListener]] object for
* receiving system events related to streaming.
*/
def addStreamingListener(streamingListener: StreamingListener) {
scheduler.listenerBus.addListener(streamingListener)
}
/**
* Start the execution of the streams.
*
* @throws SparkException if the context has already been started or stopped.
*/
def start(): Unit = synchronized {
if (state == Started) {
throw new SparkException("StreamingContext has already been started")
}
if (state == Stopped) {
throw new SparkException("StreamingContext has already been stopped")
}
validate()
sparkContext.setCallSite(DStream.getCreationSite())
scheduler.start()
state = Started
}
class PluggableInputDStream[T: ClassTag](
@transient ssc_ : StreamingContext,
receiver: Receiver[T]) extends ReceiverInputDStream[T](ssc_) {
def getReceiver(): Receiver[T] = {
receiver
}
}
class SocketInputDStream[T: ClassTag](
@transient ssc_ : StreamingContext,
host: String,
port: Int,
bytesToObjects: InputStream => Iterator[T],
storageLevel: StorageLevel
) extends ReceiverInputDStream[T](ssc_) {
def getReceiver(): Receiver[T] = {
new SocketReceiver(host, port, bytesToObjects, storageLevel)
}
}
/**
* An input stream that reads blocks of serialized objects from a given network address.
* The blocks will be inserted directly into the block store. This is the fastest way to get
* data into Spark Streaming, though it requires the sender to batch data and serialize it
* in the format that the system is configured with.
*/
private[streaming]
class RawInputDStream[T: ClassTag](
@transient ssc_ : StreamingContext,
host: String,
port: Int,
storageLevel: StorageLevel
) extends ReceiverInputDStream[T](ssc_ ) with Logging {
def getReceiver(): Receiver[T] = {
new RawNetworkReceiver(host, port, storageLevel).asInstanceOf[Receiver[T]]
}
}
/**
* Create a input stream that monitors a Hadoop-compatible filesystem
* for new files and reads them using the given key-value types and input format.
* Files must be written to the monitored directory by "moving" them from another
* location within the same file system. File names starting with . are ignored.
* @param directory HDFS directory to monitor for new file
* @tparam K Key type for reading HDFS file
* @tparam V Value type for reading HDFS file
* @tparam F Input format for reading HDFS file
*/
def fileStream[
K: ClassTag,
V: ClassTag,
F <: NewInputFormat[K, V]: ClassTag
] (directory: String): InputDStream[(K, V)] = {
new FileInputDStream[K, V, F](this, directory)
}
private[streaming]
class TransformedDStream[U: ClassTag] (
parents: Seq[DStream[_]],
transformFunc: (Seq[RDD[_]], Time) => RDD[U]
) extends DStream[U](parents.head.ssc) {
require(parents.length > 0, "List of DStreams to transform is empty")
require(parents.map(_.ssc).distinct.size == 1, "Some of the DStreams have different contexts")
require(parents.map(_.slideDuration).distinct.size == 1,
"Some of the DStreams have different slide durations")
override def dependencies = parents.toList
override def slideDuration: Duration = parents.head.slideDuration
override def compute(validTime: Time): Option[RDD[U]] = {
val parentRDDs = parents.map(_.getOrCompute(validTime).orNull).toSeq
Some(transformFunc(parentRDDs, validTime))
}
}
spark streaming 1: SparkContex的更多相关文章
- Spark踩坑记——Spark Streaming+Kafka
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...
- Spark Streaming+Kafka
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端, ...
- Storm介绍及与Spark Streaming对比
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学 ...
- flume+kafka+spark streaming整合
1.安装好flume2.安装好kafka3.安装好spark4.流程说明: 日志文件->flume->kafka->spark streaming flume输入:文件 flume输 ...
- spark streaming kafka example
// scalastyle:off println package org.apache.spark.examples.streaming import kafka.serializer.String ...
- Spark Streaming中动态Batch Size实现初探
本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如: ...
- Spark Streaming源码解读之No Receivers彻底思考
本期内容 : Direct Acess Kafka Spark Streaming接收数据现在支持的两种方式: 01. Receiver的方式来接收数据,及输入数据的控制 02. No Receive ...
- Spark Streaming架构设计和运行机制总结
本期内容 : Spark Streaming中的架构设计和运行机制 Spark Streaming深度思考 Spark Streaming的本质就是在RDD基础之上加上Time ,由Time不断的运行 ...
- Spark Streaming中空RDD处理及流处理程序优雅的停止
本期内容 : Spark Streaming中的空RDD处理 Spark Streaming程序的停止 由于Spark Streaming的每个BatchDuration都会不断的产生RDD,空RDD ...
随机推荐
- [转载]C++STL概述
来源:https://www.cnblogs.com/dyllove98/p/3214898.html 什么是容器 首先,我们必须理解一下什么是容器,在 C++ 中容器被定义为:在数据存储上,有一种对 ...
- workerman 实践 及 不能多人连接的问题
官网:https://www.workerman.net/ 手册地址:https://www.workerman.net/doc 追加内容: 请在开发前多读读 开发必读http://doc.worke ...
- 03 Redis发布与订阅
以qq群的公告,单个发布者,多个收听者为例 发布/订阅 实验 发布订阅的命令 PUBLISH channel msg 将信息 message 发送到指定的频道 channel SUBSCRIBE ch ...
- countUp.js-数字滚动效果(简单基础使用)
最近写了个移动端宣传页,里面有数字的效果,所以有使用到countUp.js. 以下内容有包括:h5页面countUp.js的引入和实例.参数说明.事件简单使用和描述.countUp.js源代码. 附上 ...
- jq sku实现
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- jQuery ajax 提交表单图片
基于 jQuery HTML: <form id="form" enctype="multipart/form-data"> <input t ...
- Linux运维课程体系大纲
Linux入门: Linux系统管理: Linux服务及安全管理: httpd,lamp,lnmp Cache:memcached,varnish(缓存系统) ...
- 架构师成长之路5.1-Saltstack安装及入门
点击架构师成长之路 架构师成长之路5.1-Saltstack安装及入门 (安装.配置.启动) 配置管理工具: Pupper:1. 采用ruby编程语言:2. 安装环境相对较复杂:3.不支持远程执行,需 ...
- Java 基础知识点滴(1)
1. ==与equals的区别 ==是用来判断两个变量的值是否相等.要比较两个基本变量或引用变量是否相等,只能用==: equal用来判断两个独立对象里面的内容是否一样. 例子: String s1 ...
- jmeter中的几种参数化场景
1.request路径中引用参数 2.body中引用参数 3.parameter中引用参数 4.header中引用参数,如token这类跟用户相关参数 5.response assertion中引用参 ...