版权声明:欢迎关注我的博客,本文为博主【炒饭君】原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/36685493

Dice

Problem Description
You have a dice with m faces, each face contains a distinct number. We assume when we tossing the dice, each face will occur randomly and uniformly. Now you have T query to answer, each query has one of the following form:
0 m n: ask for the expected number of tosses until the last n times results are all same.
1 m n: ask for the expected number of tosses until the last n consecutive results are pairwise different.
 

Input
The first line contains a number T.(1≤T≤100) The next T line each line contains a query as we mentioned above. (1≤m,n≤106) For second kind query, we guarantee n≤m. And in order to avoid potential precision issue, we guarantee the result for our query
will not exceeding 109 in this problem.
 

Output
For each query, output the corresponding result. The answer will be considered correct if the absolute or relative error doesn't exceed 10-6.
 

Sample Input

6
0 6 1
0 6 3
0 6 5
1 6 2
1 6 4
1 6 6
10
1 4534 25
1 1232 24
1 3213 15
1 4343 24
1 4343 9
1 65467 123
1 43434 100
1 34344 9
1 10001 15
1 1000000 2000
 

Sample Output

1.000000000
43.000000000
1555.000000000
2.200000000
7.600000000
83.200000000
25.586315824
26.015990037
15.176341160
24.541045769
9.027721917
127.908330426
103.975455253
9.003495515
15.056204472
4731.706620396
 

Source
 

题目大意:

m边形的骰子,问你出现连续同样(不同)n次须要掷的次数的数学期望。

解题思路:

利用递归方式的DP的思想推公式

(1)若询问为0,则:

dp[i] 记录的是已经连续i个同样,到n个同样同须要的次数的数学期望
dp[0]= 1+dp[1]
dp[1]= 1+( 1/m*dp[2]+(m-1)/m*dp[1])=1+(dp[2]+(m-1)*dp[1])/m;
dp[2]= 1+(dp[3]+(m-1)*dp[2])/m;
....................
dp[n]= 0

推出:

dp[i]   = 1 + ( (m-1)*dp[1] + dp[i+1] ) / m
dp[i+1] = 1 + ( (m-1)*dp[1] + dp[i+2] ) / m

因此。m*(dp[i+1]-dp[i])=(dp[i+2]-dp[i+1])

我们发现是等比数列

dp[0]-dp[1]=1;
dp[1]-dp[2]=m;
..........
dp[n-1]-dp[n]=m^(n-1)

累加,得:dp[0]-dp[n]=1+m+m^2+..........m^(n-1)=(1-m^n)/(1-m)

所以:dp[0]=(1-m^n)/(1-m);

(2)若询问为1,则:

 dp[0] = 1 + dp[1]
 dp[1] = 1 + (dp[1] + (m-1) dp[2]) / m
 dp[2] = 1 + (dp[1] + dp[2] + (m-2) dp[3]) / m
 dp[i] = 1 + (dp[1] + dp[2] + ... dp[i] + (m-i)*dp[i+1]) / m
dp[i+1]= 1 + (dp[1] + dp[2] + ... dp[i] + dp[i+1] + (m-i-1)*dp[i+1]) / m
 ...
 dp[n] = 0;

选出 dp[i] 和 dp[i+1] 这两行相减 得

dp[i] - dp[i+1] = (m-i-1)/m * (dp[i+1] - dp[i+2]);

因此  dp[i+1] - dp[i+2] = m/(m-i-1)*(dp[i]-dp[i+1]);

所以:
dp[0]-dp[1]=1;
dp[1]-dp[2]=1*m/(m-1);
dp[2]-dp[3]=1*m/(m-1)*m/(m-2);
..........

dp[n-1]-dp[n]=1*m/(m-1)*m/(m-2)*.......*m/(m-n+1);

累加得到答案

解题代码:

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; inline double solve(){
int op,m,n;
scanf("%d%d%d",&op,&m,&n);
double ans=0;
if(op==0){
for(int i=0;i<=n-1;i++){
ans+=pow(1.0*m,i);
}
}else{
double tmp=1.0;
for(int i=1;i<=n;i++){
ans+=tmp;
tmp*=m*1.0/(m-i);
}
}
return ans;
} int main(){
int t;
while(scanf("%d",&t)!=EOF){
while(t-- >0){
printf( "%.9lf\n",solve() );
}
}
return 0;
}

HDU 4652 Dice (概率DP)的更多相关文章

  1. hdu 4652 Dice 概率DP

    思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...

  2. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  3. hdu 4599 Dice 概率DP

    思路: 1.求f[n];dp[i]表示i个连续相同时的期望 则 dp[0]=1+dp[1]     dp[1]=1+(5dp[1]+dp[2])/6     ……     dp[i]=1+(5dp[1 ...

  4. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  5. Throwing Dice(概率dp)

    C - Throwing Dice Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Lig ...

  6. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  7. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  8. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  9. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  10. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

随机推荐

  1. PHPStorm remoteHost链接FTP成功,但不显示文件目录

    ============================================== 勾上前两个选项就可以了

  2. 一个spark SQL和DataFrames的故事

    package com.lin.spark import org.apache.spark.sql.{Row, SparkSession} import org.apache.spark.sql.ty ...

  3. 重读ORB_SLAM之LoopClosing线程难点

    1. DetectLoop 这里有个ConsistenGroup概念,比较难懂.这里是最让人迷惑的地方.一旦vbConsistentGroup为真,其他帧的spCanditateGroup就进不来了. ...

  4. vue中关于checkbox数据绑定v-model

    vue.js为开发者提供了很多便利的指令,其中v-model用于表单的数据绑定很常见, 下面是最常见的例子: <div id='myApp'>     <input type=&qu ...

  5. bootstrap-thymeleaf-分页

    1.HTML代码 <div th:fragment="paginater"> <ul th:id="paginaterUlID" th:if= ...

  6. PHP 与Python 读取大文件的区别

    php读取大文件的方法   <?php function readFile($file) { # 打开文件 $handle = fopen($file, 'rb'); while (feof($ ...

  7. Ansible--06 ansible roles

    Ansible roles roles不管是Ansible还是saltstack,我在写一键部署的时候,都不可能把所有的步骤全部写入到一个'剧本'文件当中,我们肯定需要把不同的工作模块,拆分开来,解耦 ...

  8. oracle10G rac 10.2.0.1升级10.2.0.4

    前言 ocr版本查询指令:  ocrcheck vote盘路径查询指令: crsctl query css votedisk 相关指令参考来源:http://hzhg12345.blog.163.co ...

  9. 【串线篇】浅谈BeanFactory

    BeanFactory&ApplicationContext BeanFactory: bean工厂接口,负责创建bean实例, 容器里保存的所有单例bean其实是一个map<key-- ...

  10. MS Word2016加载EndnoteX6插件

    我的软件环境是:Win10 x64.MS Office 2016 x64.Endnote X6 32位. 在安装完MSO和Endnote后,Word中未能自动加载Endnote插件.现将启用方法记录如 ...