[CF959E]Mahmoud and Ehab and the xor-MST题解
解法
又是一道结论题?
我的做法比较奇怪且没有证明
#include <cstdio>
#include <cmath>
#define ll long long
int main(){
ll ans = 0;
ll n, bs = 1;
scanf("%I64d", &n);
while (n > 1){
ans += (n >> 1) * bs;
n -= (n >> 1);
bs <<= 1;
}
printf("%I64d", ans);
return 0;
}
如果没看懂,请去
CF官方题解及其证明
[CF959E]Mahmoud and Ehab and the xor-MST题解的更多相关文章
- Codeforces 862C - Mahmoud and Ehab and the xor
862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...
- Coderfroces 862 C. Mahmoud and Ehab and the xor
C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...
- [CF959A]Mahmoud and Ehab and the even-odd game题解
题意简述 一个数n,Mahmoud珂以取(即如果取\(k\),使\(n = n - k\))一个正偶数,Ehab珂以取一个正奇数,一个人如果不能取了(对于Mahmoud和Ehab \(n = 0\), ...
- CF959E Mahmoud and Ehab and the xor-MST 思维
Ehab is interested in the bitwise-xor operation and the special graphs. Mahmoud gave him a problem t ...
- CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)
<题目链接> 题目大意: 给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值. 解题分析: 数据较大,$10^{12}$个点的完全图,然后 ...
- 【构造】【分类讨论】Codeforces Round #435 (Div. 2) C. Mahmoud and Ehab and the xor
题意:给你n,x,均不超过10^5,让你构造一个无重复元素的n个元素的非负整数集合(每个元素不超过10^6),使得它们的Xor和恰好为x. 如果x不为0: 随便在x里面找一个非零位,然后固定该位为0, ...
- codeforces 862 C. Mahmoud and Ehab and the xor(构造)
题目链接:http://codeforces.com/contest/862/problem/C 题解:一道简单的构造题,一般构造题差不多都考自己脑补,脑洞一开就过了 由于数据x只有1e5,但是要求是 ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】
<题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...
- 【Codeforces Round #435 (Div. 2) C】Mahmoud and Ehab and the xor
[链接]h在这里写链接 [题意] 让你组成一个n个数的集合,使得这n个数的异或和为x; x<=1e5 每个数最大1e6; [题解] 1e5<=2^17<=2^18<=1e6的 ...
- 862C - Mahmoud and Ehab and the xor(构造)
原题链接:http://codeforces.com/contest/862/problem/C 题意:给出n,x,求n个不同的数,使这些数的异或和为x 思路:(官方题解)只有n==2&&am ...
随机推荐
- 类BigDecimal
/* * float和double类型的数据存储和int不一样 * * float和double类型容易丢失精度 * * 因此使用BigDecimal * * BigDecimal类描述:不可变的,任 ...
- 001/Go语言构建区块链(mooc)
1.区块链发展与现状 视频地址:https://www.imooc.com/video/17452 注意: 比特币与以太坊最大的区别在于: 以太坊引入了对图灵完美智能合约的支持,人们可以将任何业务逻辑 ...
- 20190908 On Java8 第十九章 类型信息
第十九章 类型信息 RTTI(RunTime Type Information,运行时类型信息)能够在程序运行时发现和使用类型信息. Java 主要有两种方式在运行时识别对象和类信息: "传 ...
- 排序算法七:基数排序(Radix sort)
上一篇提到了计数排序,它在输入序列元素的取值范围较小时,表现不俗.但是,现实生活中不总是满足这个条件,比如最大整形数据可以达到231-1,这样就存在2个问题: 1)因为m的值很大,不再满足m=O(n) ...
- Echats
网址:https://www.echartsjs.com 1.特性 ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(I ...
- Java集合:Collection、List、Set、Map、泛型
1.集合的理解和好处 2.集合的框架体系图 ★ 3.Collection接口的特点和使用 ★ 4.List和Set接口的特点和使用★ 5.List接口的实现类学习★ 6.Set接口的实现类学习★ 7. ...
- Kosaraju算法 有向图的强连通分量
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- POJ-2528 Mayor's posters (离散化, 线段树)
题目传送门: POJ-2528 题意就是在一个高度固定的墙面上贴高度相同宽度不同的海报,问贴到最后还能看到几张?本质上是线段树区间更新问题,但是要注意的是题中所给数据范围庞大,直接搞肯定会搞出问题,所 ...
- Eclipse的Working Set管理项目
想必大家的Eclipse里也会有这么多得工程...... 每次工作使用到的项目肯定不会太多...... 每次从这么大数量的工程当中找到自己要使用的, 必须大规模的滚动滚动条......有点不和谐了. ...
- 计算机体系结构——流水线技术(Pipelining)
本文导读: 一.并行技术 .并行技术分类 .新技术的设计与实现 .指令周期 二.流水线技术 .什么是流水线 .指令重叠方式 .流水工作设计 .流水线的描述方法(时空图) .流水线特点 三.流水线的分类 ...