解法

又是一道结论题?

我的做法比较奇怪且没有证明

#include <cstdio>
#include <cmath>
#define ll long long int main(){
ll ans = 0;
ll n, bs = 1;
scanf("%I64d", &n);
while (n > 1){
ans += (n >> 1) * bs;
n -= (n >> 1);
bs <<= 1;
}
printf("%I64d", ans);
return 0;
}

如果没看懂,请去

CF官方题解及其证明

[CF959E]Mahmoud and Ehab and the xor-MST题解的更多相关文章

  1. Codeforces 862C - Mahmoud and Ehab and the xor

    862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...

  2. Coderfroces 862 C. Mahmoud and Ehab and the xor

    C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...

  3. [CF959A]Mahmoud and Ehab and the even-odd game题解

    题意简述 一个数n,Mahmoud珂以取(即如果取\(k\),使\(n = n - k\))一个正偶数,Ehab珂以取一个正奇数,一个人如果不能取了(对于Mahmoud和Ehab \(n = 0\), ...

  4. CF959E Mahmoud and Ehab and the xor-MST 思维

    Ehab is interested in the bitwise-xor operation and the special graphs. Mahmoud gave him a problem t ...

  5. CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)

    <题目链接> 题目大意: 给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值. 解题分析: 数据较大,$10^{12}$个点的完全图,然后 ...

  6. 【构造】【分类讨论】Codeforces Round #435 (Div. 2) C. Mahmoud and Ehab and the xor

    题意:给你n,x,均不超过10^5,让你构造一个无重复元素的n个元素的非负整数集合(每个元素不超过10^6),使得它们的Xor和恰好为x. 如果x不为0: 随便在x里面找一个非零位,然后固定该位为0, ...

  7. codeforces 862 C. Mahmoud and Ehab and the xor(构造)

    题目链接:http://codeforces.com/contest/862/problem/C 题解:一道简单的构造题,一般构造题差不多都考自己脑补,脑洞一开就过了 由于数据x只有1e5,但是要求是 ...

  8. CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】

    <题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...

  9. 【Codeforces Round #435 (Div. 2) C】Mahmoud and Ehab and the xor

    [链接]h在这里写链接 [题意] 让你组成一个n个数的集合,使得这n个数的异或和为x; x<=1e5 每个数最大1e6; [题解] 1e5<=2^17<=2^18<=1e6的 ...

  10. 862C - Mahmoud and Ehab and the xor(构造)

    原题链接:http://codeforces.com/contest/862/problem/C 题意:给出n,x,求n个不同的数,使这些数的异或和为x 思路:(官方题解)只有n==2&&am ...

随机推荐

  1. 类BigDecimal

    /* * float和double类型的数据存储和int不一样 * * float和double类型容易丢失精度 * * 因此使用BigDecimal * * BigDecimal类描述:不可变的,任 ...

  2. 001/Go语言构建区块链(mooc)

    1.区块链发展与现状 视频地址:https://www.imooc.com/video/17452 注意: 比特币与以太坊最大的区别在于: 以太坊引入了对图灵完美智能合约的支持,人们可以将任何业务逻辑 ...

  3. 20190908 On Java8 第十九章 类型信息

    第十九章 类型信息 RTTI(RunTime Type Information,运行时类型信息)能够在程序运行时发现和使用类型信息. Java 主要有两种方式在运行时识别对象和类信息: "传 ...

  4. 排序算法七:基数排序(Radix sort)

    上一篇提到了计数排序,它在输入序列元素的取值范围较小时,表现不俗.但是,现实生活中不总是满足这个条件,比如最大整形数据可以达到231-1,这样就存在2个问题: 1)因为m的值很大,不再满足m=O(n) ...

  5. Echats

    网址:https://www.echartsjs.com 1.特性 ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(I ...

  6. Java集合:Collection、List、Set、Map、泛型

    1.集合的理解和好处 2.集合的框架体系图 ★ 3.Collection接口的特点和使用 ★ 4.List和Set接口的特点和使用★ 5.List接口的实现类学习★ 6.Set接口的实现类学习★ 7. ...

  7. Kosaraju算法 有向图的强连通分量

    有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  8. POJ-2528 Mayor's posters (离散化, 线段树)

    题目传送门: POJ-2528 题意就是在一个高度固定的墙面上贴高度相同宽度不同的海报,问贴到最后还能看到几张?本质上是线段树区间更新问题,但是要注意的是题中所给数据范围庞大,直接搞肯定会搞出问题,所 ...

  9. Eclipse的Working Set管理项目

    想必大家的Eclipse里也会有这么多得工程...... 每次工作使用到的项目肯定不会太多...... 每次从这么大数量的工程当中找到自己要使用的, 必须大规模的滚动滚动条......有点不和谐了. ...

  10. 计算机体系结构——流水线技术(Pipelining)

    本文导读: 一.并行技术 .并行技术分类 .新技术的设计与实现 .指令周期 二.流水线技术 .什么是流水线 .指令重叠方式 .流水工作设计 .流水线的描述方法(时空图) .流水线特点 三.流水线的分类 ...