[LOJ161] 仙人掌计数
Statement
带标号仙人掌计数问题.
\(n< 131072\).
Solution
设\(x\)个点的仙人掌个数的生成函数为\(C(x)\)
对于与根相邻的块, 还是仙人掌, 生成函数为\(C(x)\)
包含根的环, 生成函数为\(\sum_{i>1}\frac{C(x)^i}{2}\)
组合起来:
\[
C(x) = x \exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}
\]
设\(G(C(x)) = x\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}-C(x)\), 那么:
\[
\small{
\begin{aligned}
G'(C(x)) &= x\left(\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}\right)'-1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)' - 1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(\frac{\left(2-2C(x)\right)^2-\left(2C(x) - C(x)^2\right)(-2)}{(2-2C(x))^2}\right)
- 1\\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{4C(x) - 2C(x)^2}{(2-2C(x))^2}\right)
- 1
\end{aligned}
}
\]
牛顿迭代:
\[
\begin{aligned}
C_1(x) &= C(x) - \frac{G(C(x))}{G'(C(x))} \\
&= C(x) - \frac{2x\exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)-2C(x)}
{x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{1}{(C(x)-1)^2}\right)
- 2}
\end{aligned}
\]
[LOJ161] 仙人掌计数的更多相关文章
- [LOJ6569] 仙人掌计数
Statement 带标号仙人掌计数问题. \(n< 131072\). Solution 设\(x\)个点的仙人掌个数的生成函数为\(C(x)\) 对于与根相邻的块, 还是仙人掌, 生成函数为 ...
- WinterCamp2017 游记
Winter is coming! Day0 Day0前一天打了一轮CF,做完了ABCD,Div2 Rank59.然后就去开开心心的睡觉,准备第二天的行程. 快到一点的时候躺在了床上,睡不着,翻来覆去 ...
- [日常] NOIWC2019 冬眠记
NOIWC 2019 冬眠记 辣鸡rvalue天天写意识流流水账 Day 0 早上没有跑操(极度舒服.png) 和春哥在博客颓图的时候突然被来送笔电的老爹查水表(捂脸) 母上大人骗我说这功能机不能放存 ...
- WC2017游记
Day0 到杭州之后出了点锅换了辆车,等了好久才开= =到宿舍发现路由器就在房门口,稳啊,过了一会儿就连不上了= =而且只有门口那个连不上,可以连上楼下的= =之后干了啥也忘了…… Day1 上午直接 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- $dy$讲课总结
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
随机推荐
- Jmeter之完整的HTTP接口测试
目前很多接口都是基于HTTP的,所以针对HTTP接口测试的了解很重要,下面就简单说明一下,一个基于Jmeter上HTTP接口测试需要的内容. 一.一个HTTP接口测试需要最基础的内容 如下: 简单说明 ...
- 刷题——一道全排列的题目(Permutations)
题目内容: 思路其实很简单,那就是暴力交换顺序,直接迭代出所有可能.先在一个位置固定一个数字,然后对剩下的数字进行排列,用同样的方法对剩下的数字进行排列(因此要用到递归,不用也行,但是会复杂一点,这里 ...
- Django密码错误报错提醒
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOwAAAIBCAYAAABKllNhAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjw
- Maven 修改jdk版本
Maven 修改jdk版本方法1: <build> <plugins> <plugin> <groupId>org.apache.maven.plugi ...
- 如何在Web工程中实现任务计划调度
转载自: http://www.oschina.net/question/146385_37793?sort=time 下面就Servlet侦听器结合Java定时器来讲述整个实现过程.要运用Servl ...
- POJ-2287.Tian Ji -- The Horse Racing (贪心)
Tian Ji -- The Horse Racing Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 17662 Acc ...
- Eclipse解除已关联的Coding远程仓库,重新关联github上的远程仓库
1.在Eclipse中的Git Repositories中找到要解除的仓库,依次找到Remote--origin[视自己的实际情况选择], 2.选中origin,右键选择Delete Remote , ...
- java 继承extends 的相关知识点
java只有单继承,不能多继承 子类只能继承父类的非私有成员(成员变量.成员方法) 子类不能继承父类的构造方法,但是可以通过super关键字访问父类的构造方法 继承 要体现子类父类的 继承关系, ”i ...
- 10、应用机器学习的建议(Advice for Applying Machine Learning)
10.1 决定下一步做什么 到目前为止,我们已经介绍了许多不同的学习算法,如果你一直跟着这些视频的进度学习,你会发现自己已经不知不觉地成为一个了解许多先进机器学习技术的专家了. 然而,在懂机器学习的人 ...
- HDU_2007
/** *注意:输入的两个数字的大小并不确定 */ #include <iostream> #include <stdio.h> #include <string.h&g ...