[LOJ161] 仙人掌计数
Statement
带标号仙人掌计数问题.
\(n< 131072\).
Solution
设\(x\)个点的仙人掌个数的生成函数为\(C(x)\)
对于与根相邻的块, 还是仙人掌, 生成函数为\(C(x)\)
包含根的环, 生成函数为\(\sum_{i>1}\frac{C(x)^i}{2}\)
组合起来:
\[
C(x) = x \exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}
\]
设\(G(C(x)) = x\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}-C(x)\), 那么:
\[
\small{
\begin{aligned}
G'(C(x)) &= x\left(\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}\right)'-1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)' - 1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(\frac{\left(2-2C(x)\right)^2-\left(2C(x) - C(x)^2\right)(-2)}{(2-2C(x))^2}\right)
- 1\\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{4C(x) - 2C(x)^2}{(2-2C(x))^2}\right)
- 1
\end{aligned}
}
\]
牛顿迭代:
\[
\begin{aligned}
C_1(x) &= C(x) - \frac{G(C(x))}{G'(C(x))} \\
&= C(x) - \frac{2x\exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)-2C(x)}
{x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{1}{(C(x)-1)^2}\right)
- 2}
\end{aligned}
\]
[LOJ161] 仙人掌计数的更多相关文章
- [LOJ6569] 仙人掌计数
Statement 带标号仙人掌计数问题. \(n< 131072\). Solution 设\(x\)个点的仙人掌个数的生成函数为\(C(x)\) 对于与根相邻的块, 还是仙人掌, 生成函数为 ...
- WinterCamp2017 游记
Winter is coming! Day0 Day0前一天打了一轮CF,做完了ABCD,Div2 Rank59.然后就去开开心心的睡觉,准备第二天的行程. 快到一点的时候躺在了床上,睡不着,翻来覆去 ...
- [日常] NOIWC2019 冬眠记
NOIWC 2019 冬眠记 辣鸡rvalue天天写意识流流水账 Day 0 早上没有跑操(极度舒服.png) 和春哥在博客颓图的时候突然被来送笔电的老爹查水表(捂脸) 母上大人骗我说这功能机不能放存 ...
- WC2017游记
Day0 到杭州之后出了点锅换了辆车,等了好久才开= =到宿舍发现路由器就在房门口,稳啊,过了一会儿就连不上了= =而且只有门口那个连不上,可以连上楼下的= =之后干了啥也忘了…… Day1 上午直接 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- $dy$讲课总结
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
随机推荐
- if else 更优雅的写法(转)
https://www.cnblogs.com/y896926473/articles/9675819.html
- Pandas 50题练习
f行的age改为1. df.loc['f', 'age'] = 1.5 这样比 df.loc['f']['age'] 好 计算df中每个种类animal的数量 df['animal'].value_c ...
- python爬虫常用数据整理函数
text() 获取xpath中的值....../h1/text() extract()[0] Selector的方法用于提取内容为 ...
- 16/7/8_PHP-对象的高级特性
对这个理解不太懂或者说 没有一个明确的用法,不知道该怎么使用,说到底还是不懂有什么用.我还是先把只是点复制过来 对象比较,当同一个类的两个实例的所有属性都相等时,可以使用比较运算符==进行判断,当需要 ...
- 【ABAP系列】SAP ABAP 用BAPI批量导入物料的质量视图
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP ABAP 用BAPI批量导入 ...
- 使用Vsftpd服务(匿名访问模式、本地用户模式)
FTP协议占用两个端口号: 21端口:命令控制,用于接收客户端执行的FTP命令. 20端口:数据传输,用于上传.下载文件数据.. FTP数据传输的类型: 主动模式:FTP服务端主动向FTP客户端发起连 ...
- Java static关键字的重新思考
上完Java课,虽然也写了不少的Java代码,但是一直有不少的疑惑,而static关键字一直困惑着我很久,今天无意探究竟,上知乎再仔细查了一下,发现了这个话题的优秀答案https://www.zhih ...
- AtCoder Beginner Contest 133 B - Good Distance
地址:https://atcoder.jp/contests/abc133/tasks/abc133_b 核心问题:判断一个浮点数开方是否为整数 ; double ans1=sqrt(ans); if ...
- 进程通信(multiprocessing.Queue)
from multiprocessing import Queue Queue([maxsize]) 创建共享的进程队列.maxsize是队列中允许的最大项数.如果省略此参数,则无大小限制.底层队列使 ...
- Photoshop制作Android UI:怎样从大图片中准确剪切出圆角正方形 图片
如题所看到的,最初我是直接用PS的剪切工具,但发现有时不太好用. 由于你必须提前设好要剪切的尺寸. 也可能是我这小白不知道咋用. 下为摸索到的最好方法: 1.打开原图.新建图层,假设是png图片就不用 ...