题意:给定一个数列a,给定两种操作:

1.询问[l,r]区间内最大的xor和

2.n++,a[n]赋值为x

要求强制在线

n,m<=5e5,a[i]<2^30

思路:同CF1100F

固定右端点,维护每一维上使生成空间变大的最大的左端点

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,int>P;
#define N 1100000
#define M 151000
#define fi first
#define se second
#define MP make_pair
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
ll INF=1e18;
ll inf=5e13;
int dx[]={-,,,};
int dy[]={,,-,}; int f[N][],g[N][],a[N]; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int i,int x)
{
int k=i;
per(j,,) f[i][j]=f[i-][j],g[i][j]=g[i-][j];
per(j,,)
if(x>>j)
{
if(!f[i][j])
{
f[i][j]=x;
g[i][j]=k;
break;
}
else
{
if(k>g[i][j])
{
swap(k,g[i][j]);
swap(x,f[i][j]);
}
x^=f[i][j];
}
}
} int main()
{
//freopen("1.in","r",stdin);
//freopen("1.out","w",stdout);
int cas=read();
while(cas--)
{
int n=read(),m=read();
rep(i,,n)
rep(j,,) f[i][j]=g[i][j]=;
int lastans=;
rep(i,,n)
{
a[i]=read();
add(i,a[i]);
} while(m--)
{
int op=read();
if(op)
{
a[++n]=read()^lastans;
add(n,a[n]);
}
else
{
int l=read(),r=read();
l=(l^lastans)%n+,r=(r^lastans)%n+;
if(l>r) swap(l,r);
lastans=;
per(i,,)
if((lastans^f[r][i])>lastans&&g[r][i]>=l) lastans^=f[r][i];
printf("%d\n",lastans);
}
} } return ;
}

【HDOJ6579】Operation(线性基)的更多相关文章

  1. 2019杭电多校第一场hdu6579 Operation(线性基)

    Operation 题目传送门 解题思路 把右边的数尽量往高位放,构造线性基的时候同时记录其在原序列中的位置,在可以插入的时候如果那个位置上存在的数字的位置比新放入的要小,就把旧的往后挤.用这种发现构 ...

  2. [2019杭电多校第一场][hdu6579]Operation(线性基)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题目大意是两个操作,1个是求[l,r]区间子序列的最大异或和,另一个是在最后面添加一个数. 如果 ...

  3. (线性基)Operation

    http://acm.hdu.edu.cn/showproblem.php?pid=6579 线性基https://blog.csdn.net/a_forever_dream/article/deta ...

  4. hdu 6579 Operation (在线线性基)

    传送门 •题意 一个数组a有n个数 m个操作 操作① 询问$[l,r]$区间的异或值 操作② 在数组末尾追加一个数x,数组长度变为$n+1$ 其中$l,r$不直接给出,其中$l=l%n+1,r=r%n ...

  5. 杭电多校HDU 6579 Operation (线性基 区间最大)题解

    题意: 强制在线,求\(LR\)区间最大子集异或和 思路: 求线性基的时候,记录一个\(pos[i]\)表示某个\(d[i]\)是在某个位置更新进入的.如果插入时\(d[i]\)的\(pos[i]\) ...

  6. ACM线性基学习笔记

    https://www.cnblogs.com/31415926535x/p/11260897.html 概述 最近的几场多校出现了好几次线性基的题目,,会想起之前在尝试西安区域赛的一道区间异或和最大 ...

  7. 前缀和线性基HDU6579

    Operation 题解:看到区间最大异或和,首先想到的是线性基: 线性基可以处理的操作是: 在数列末尾插入一个数 查询全局的子集异或最大值 由于线性基的长度很短,因此我们可以将数列所有前缀的线性基保 ...

  8. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  9. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  10. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

随机推荐

  1. JS - 迭代协议

    Iteration protocols | MDN 可迭代协议(iterable protocol) 迭代器协议(iterator protocol)

  2. day21—AngularJS学习初体验

    转行学开发,代码100天——2018-04-06 今天按照学习计划安排,开始AngularJS的学习. 关于AngularJS,在菜鸟教程上这样介绍 好吧,Angular学习起来非常简单,哈哈,现在就 ...

  3. mysql-M-S-S模型 中继器 级联

    1.基础环境 三台虚机并且安装有mysql 并且同步好数据库 2.主服务器-创建账号并授权 mysql> create user 'mslave'@'X.X.X.X' identified by ...

  4. SparkSQL架构

    Spark SQL运行架构 Spark SQL由Core.Catalyst.Hive和Hive-Thriftserver组成 core:负责处理数据的输入/输出,从不同的数据源获取数据(如RDD.Pa ...

  5. MQ基础知识学习

    之前听人提起了MQ协议,我就去稍微了解了一下什么是MQ,和MQ的一些基础性的知识. 什么是MQ呢? 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过写和检索出入列队的针对应用程序的数据 ...

  6. MySQL 查询语句--------------进阶8:分页查询

    #进阶8:分页查询 /* 应用场景:要显示的数据,一页显示不全,需要分页提交sql请求 语法: select 查询列表 from 表 [join type] join 表2 on 连接条件 [wher ...

  7. PowerShell - Invoke VBA function

    $xl = new-object -comobject Excel.Application $source_wb = $xl.workbooks.open($source) $xl.visible=$ ...

  8. C#=> 栈模仿堆的操作

    //原理,利用两个栈,互相作用,来模仿堆的效果,先进先出.. using System; using System.Collections.Generic; using System.Linq; us ...

  9. [SHOI2012] 火柴游戏

    [SHOI2012] 火柴游戏 [题目链接] 链接 [思路要点] 首先发现移动火柴操作可以放到最后做.每一次移动火柴一定可以看做是添加一根火柴再删除一根火柴,并且可以将任意一次添加和一次删除操作合并为 ...

  10. spring cloud gateway获取response body

    网关发起请求后,微服务返回的response的值要经过网关才发给客户端.本文主要讲解在spring cloud gateway 的过滤器中获取微服务的返回值,因为很多情况我们需要对这个返回进行处理.网 ...