Description

Solution

943718401=225*2^22+1

显然每行必须有两个,我们不妨枚举有k列有2个石子,那么有2(n-k)列有1个石子。

\[Ans=\sum\limits_{k=0}^{n}{m\choose k}{m-k\choose 2(n-k)}S_k
\]

抽象一下问题,我们有n种颜色的球,每种颜色的球有两个且没有区别,现在要将它们放进k+2(n-k)个有区别的盒子中,其中k个盒子无序的放2个球,2(n-k)个盒子放1个球,同种颜色的球不能放入同一个盒子,\(S_k\)就是方案数,我们只需要快速算出所有的\(S_k\)。

同种颜色的球不能放入同一个盒子的限制比较烦人,我们考虑容斥。

枚举有多少个盒子放了两个相同颜色的球。

从n种颜色选出i个颜色,k个盒子选出i个盒子,以某种顺序放置。

我们先假定同种颜色的两个球不同,k个盒子的两个球有序,最后再除掉。

剩下(2n-2i)!个球再以某种顺序填入盒子。

那么有

\[S_k={1\over 2^{n+k}}\sum\limits_{i=0}^{k}{k\choose i}{n\choose i}i!(-1)^{i}2^i(2n-2i)!
\]

这是一个卷积的形式,可以用FFT加速。

这样就只用了一次卷积就算出了答案。

时间复杂度\(O(n\log n)\)

Code

#include <bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
#define LL long long
using namespace std;
int M,L;
const int mo=943718401;
const int MAXM=4194304;
LL js[MAXM+1],ny[MAXM+1];
LL ksm(LL k,LL n)
{
LL s=1;
for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo;
return s;
}
namespace poly
{
int wi[MAXM+1],bit[MAXM+1],ns;
void init()
{
js[0]=1;
fo(i,1,M) js[i]=js[i-1]*i%mo,bit[i]=(bit[i>>1]>>1)|((i&1)<<(L-1));
ny[M]=ksm(js[M],mo-2);
fod(i,M-1,0) ny[i]=ny[i+1]*(i+1)%mo;
wi[0]=1;
wi[1]=ksm(7,(mo-1)/M); fo(i,2,M) wi[i]=(LL)wi[i-1]*wi[1]%mo;
ns=ksm(M,mo-2);
}
void DFT(int *a)
{
int v;
fo(i,0,M-1) if(i<bit[i]) swap(a[i],a[bit[i]]);
for(int h=1;h<M;h<<=1)
{
int wn=wi[M/h/2];
for(int j=0;j<M;j+=h*2)
{
int *x=a+j,*y=x+h,w=1;
for(int i=0;i<h;i++,x++,y++,w=(LL)w*wn%mo)
{
v=(LL)*y * w%mo;
*y=(*x-v+mo)%mo;
*x=(*x+v)%mo;
}
}
}
}
void IDFT(int *a)
{
DFT(a);
fo(i,0,M-1) a[i]=(LL)a[i]*ns%mo;
reverse(a+1,a+M);
}
}
using poly::init;
using poly::DFT;
using poly::IDFT;
LL n,m;
LL C(int n,int m)
{
if(n<m) return 0;
return js[n]*ny[m]%mo*ny[n-m]%mo;
}
int a[MAXM+1],b[MAXM+1];
int main()
{
cin>>n>>m;
M=1,L=0;
while(M<2*n+2) M<<=1,L++;
init();
LL v=1;
fo(i,0,n)
{
a[i]=v*C(n,i)%mo*js[2*(n-i)]%mo%mo;
b[i]=ny[i]%mo;
v=mo-v;
v=v*2%mo;
}
DFT(a),DFT(b);
fo(i,0,M-1) a[i]=(LL)a[i]*b[i]%mo;
IDFT(a);
LL ans=0,vs=1,ck=1,cn=1;
fo(i,0,min(m-1,n*2-1)) cn=(m-i)%mo*js[i]%mo*ny[i+1]%mo*cn%mo;
fo(i,0,n)
{
if(2*(n-i)<=m-i) ans=(ans+vs*ck%mo*cn%mo*a[i]%mo*js[i]%mo)%mo;
vs=vs*ny[2]%mo;
ck=(m-i)%mo*js[i]%mo*ny[i+1]%mo*ck%mo;
if(2*(n-i)<=m-i) cn=cn*ksm((m-i)%mo*((m-2*n+i+1)%mo)%mo,mo-2)%mo*(((n-i)*2-1+mo)%mo*((n-i)*2%mo)%mo)%mo;
}
ans=ans*vs%mo*2%mo;
printf("%lld\n",ans);
}

【杂题】[LibreOJ #6608] 无意识的石子堆【容斥原理】【FFT】的更多相关文章

  1. LOJ6609 无意识的石子堆【加强版】【容斥原理,计数】

    题目描述:在一个\(n\times m\)的网格中,放\(2n\)个棋子,使每一行和每一列都不超过两个棋子.求方案数\(\mathrm{mod} \ 943718401\). 数据范围:\(n\le ...

  2. 【Java面试】-- 杂题

    杂题 2019-11-03  21:09:37  by冲冲 1.类加载器的双亲委派机制 类加载器:把类通过类加载器加载到JVM中,然后转换成class对象(通过类的全路径来找到这个类). 双亲委派机制 ...

  3. 贪心/构造/DP 杂题选做Ⅱ

    由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...

  4. 贪心/构造/DP 杂题选做Ⅲ

    颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...

  5. 由Java中toString()方法引发的无意识的递归想到的

    先看一段很简单的java代码: toString()/** * @author jeffwong */ public class InfiniteRecursion { public String t ...

  6. 无意识(无知)-->有意识-->进入潜意识-->无意识(本能状态)

    无意识(无知)-->有意识-->进入潜意识-->无意识(本能状态) 1. 从“无意识-->有意识”的两个重要内容是“反省”+“要努力学习”,估计有80%的人无法跨过这一步 2. ...

  7. 正睿OI DAY3 杂题选讲

    正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...

  8. dp杂题(根据个人进度选更)

    ----19.7.30 今天又开了一个新专题,dp杂题,我依旧按照之前一样,这一个专题更在一起,根据个人进度选更题目; dp就是动态规划,本人认为,动态规划的核心就是dp状态的设立以及dp转移方程的推 ...

  9. wangkoala杂题总集(根据个人进度选更)

    CQOI2014 数三角形 首先一看题,先容斥一波,求出网格内选三个点所有的情况,也就是C(n*m,3);然后抛出行里三点共线的方案数:C(n,3)*m; 同理就有列中三点共线的方案数:n*C(m,3 ...

随机推荐

  1. 北京望京SOHO-电商墨镜面试题

    我去面试,boos 给出了个.动态规划的题目: ‘’‘’‘’ A = "asdf" B = "axazxcv" S = "axasazdxfcv&qu ...

  2. 有关最短路上的第k小/大值的总结

    1.USACO08JAN  Telephone Lines 题面 由于问的是最大值最小,所以二分加验证就好了 比较显然的,题干问的是第k+1长的路最短: 那么二分答案是正确的方向: 但是怎么验证? 我 ...

  3. CSS3彩色进度条加载动画 带进度百分比

    在线演示       本地下载

  4. java虚拟机精讲

    2.程序计数器 是指当前线程所执行字节码的行号指示器 比如if 循环 抛异常 等都需要程序计数器 如果线程执行java方法 程序计数器记录的是虚拟机字节码指令的地址 如果线程执行native方法时程序 ...

  5. centos配置mutt和msmtp发送邮件

    一.安装mutt yum install mutt -y 二.配置mutt vim /etc/Muttrc 在里面找到下面几行,并将内容修改为你自己的内容(下面几行分布在不同位置,请耐心查找,记得去掉 ...

  6. SQL学习(一)之简介

    什么是 SQL? SQL 指结构化查询语言(Structured Query Language) SQL 使我们有能力访问数据库 SQL 是一种 ANSI 的标准计算机语言 SQL 能做什么? SQL ...

  7. leetcode 1051. Height Checker

    Students are asked to stand in non-decreasing order of heights for an annual photo. Return the minim ...

  8. sqlalchemy.exc.InternalError: (pymysql.err.InternalError) (1366, "Incorrect string value: '\\xE6\\xB1\\x89\\xE8\\xAF\\xAD...' for column 'className' at row 1") [SQL: INSERT INTO classmessage (`classId

    sqlalchemy.exc.InternalError: (pymysql.err.InternalError) (1366, "Incorrect string value: '\\xE ...

  9. C# 封装返回类

    using System; using System.Collections.Generic; using System.Runtime.CompilerServices; using System. ...

  10. Darknet版YOLO安装与配置

    Darknet配置和安装 1. 安装显卡驱动 首先查看一下自己的电脑需要怎样的驱动,我们可以先到 http://www.nvidia.com/Download/index.aspx 查询下我们需要的是 ...