今天我们介绍图像处理邻域中比较常用的一种方法,image pyramid, 也叫图像金字塔。就是将图像进行一层一层的下采样,图像金字塔是为了构建图像的多尺度,让模型能够更好的适应图像的尺度变化,图像金字塔可以广泛应用于图像识别,目标检测,还有光流配准,块匹配都能看到它的身影。图像金字塔主要有两种,一种是高斯金字塔,gaussian pyramid,另外一种是拉普拉斯金字塔,Laplacian Pyramids。

(3)G0=IG1=Down(G0∗F)G2=Down(G1∗F)⋅⋅⋅GN=Down(GN−1∗F)" role="presentation">G0=IG1=Down(G0∗F)G2=Down(G1∗F)⋅⋅⋅GN=Down(GN−1∗F)(3)(3)G0=IG1=Down(G0∗F)G2=Down(G1∗F)⋅⋅⋅GN=Down(GN−1∗F)

Gk" role="presentation" style="position: relative;">GkGk 表示的每一层金字塔中的图像,F" role="presentation" style="position: relative;">FF 表示高斯卷积核,∗" role="presentation" style="position: relative;">∗∗ 表示卷积操作,Down" role="presentation" style="position: relative;">DownDown 表示下采样,上面的表达式,就可以构建一个图像金字塔。这个在 Open-CV 中有现成的函数,下面给出一段代码,看看高斯金字塔的构建:

    import numpy as np
import matplotlib.pyplot as plt A = cv2.imread('D:/Python_Code/Test_img/2.jpg')
row, col, dpt = A.shape
pyr_level = 4
# generate Gaussian pyramid for A
G = A.copy()
gpA = [G]
for i in range(pyr_level):
G = cv2.pyrDown(G)
gpA.append(G) G = np.zeros([row, col, dpt], dtype='uint8') rowX2 = row // 2
colX2 = col // 2
G[:rowX2, :colX2, :] = gpA[1]
rowX4 = rowX2 // 2
colX4 = colX2 // 2
G[rowX2:rowX2+rowX4, colX2:colX2+colX4, :] = gpA[2]
G[:rowX4, colX2:colX2+colX4, :] = gpA[2]
rowX8 = rowX4 // 2
colX8 = colX4 // 2
G[rowX2+rowX4:rowX2+rowX4+rowX8, colX2+colX4:colX2+colX4+colX8, :] = gpA[3]
G[ :rowX8, colX2+colX4:colX2+colX4+colX8, :] = gpA[3]
cv2.imshow("gau_pyr", G)

下面给出一个效果图:

下面看看,拉普拉斯金字塔,拉普拉斯金字塔其实是根据高斯金字塔计算得来的:

(4)L0=G0−Up(G1∗F)L1=G1−Up(G2∗F)L2=G2−Up(G3∗F)⋅⋅⋅LN−1=GN−1−Up(GN∗F)LN=GN" role="presentation">L0=G0−Up(G1∗F)L1=G1−Up(G2∗F)L2=G2−Up(G3∗F)⋅⋅⋅LN−1=GN−1−Up(GN∗F)LN=GN(4)(4)L0=G0−Up(G1∗F)L1=G1−Up(G2∗F)L2=G2−Up(G3∗F)⋅⋅⋅LN−1=GN−1−Up(GN∗F)LN=GN

利用拉普拉斯金字塔,可以实现图像的重建,根据上面的表达式,我们可以得到:

(6)GN−1≈LN−1+Up(LN)GN−2≈LN−2+Up(GN−1)⋅⋅⋅G1≈L1+Up(G2)G0≈L0+Up(G1)" role="presentation">GN−1≈LN−1+Up(LN)GN−2≈LN−2+Up(GN−1)⋅⋅⋅G1≈L1+Up(G2)G0≈L0+Up(G1)(6)(6)GN−1≈LN−1+Up(LN)GN−2≈LN−2+Up(GN−1)⋅⋅⋅G1≈L1+Up(G2)G0≈L0+Up(G1)

也就是说,把拉普拉斯金字塔层层上采样,再累加,就可以重建出最初的图像。下面给出一段代码:

    import cv2
import numpy as np
A = cv2.imread('D:/Python_Code/Test_img/2.jpg') pyr_level = 4
# generate Gaussian pyramid for A
G = A.copy()
gpA = [G]
for i in range(pyr_level):
G = cv2.pyrDown(G)
gpA.append(G) # generate Laplacian Pyramid for A
lpA = [gpA[pyr_level -1 ]]
for i in range(pyr_level - 1,0,-1):
GE = cv2.pyrUp(gpA[i])
L = cv2.subtract(gpA[i-1],GE)
lpA.append(L) # Now add left and right halves of images in each level
LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt = la.shape
ls = la
LS.append(ls) # now reconstruct
ls_ = LS[0]
for i in range(1,pyr_level):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i]) cv2.imwrite('Pyramid_blending2.jpg',ls_)

原图:

重建后的图:

Image Pyramid的更多相关文章

  1. CF 676B Pyramid of Glasses[模拟]

    B. Pyramid of Glasses time limit per test 1 second memory limit per test 256 megabytes input standar ...

  2. Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)

    在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...

  3. 论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

    Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015  摘要:本文提出一种 ...

  4. codeforces 676B B. Pyramid of Glasses(模拟)

    题目链接: B. Pyramid of Glasses time limit per test 1 second memory limit per test 256 megabytes input s ...

  5. hdu 5432 Pyramid Split 二分

    Pyramid Split Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/conte ...

  6. Spatial Pyramid Matching 小结

    Spatial Pyramid Matching 小结 稀疏编码系列: (一)----Spatial Pyramid 小结 (二)----图像的稀疏表示——ScSPM和LLC的总结 (三)----理解 ...

  7. pyramid的第一个项目

    1,安装pyramid --在次之前最好先安装python virtualenv --python virtualenv ---激活方式pyenv activate pip install pyram ...

  8. OpenGL蓝宝书第五章代码勘误以及惯性坐标系去解释模型变换:Pyramid.cpp

    假设你也发现依照教程代码完毕贴图时,你会底面的坐标和寻常顶点坐标正负相反,比方-1.0f, -1.0f, -1.0f这个顶点相应的却是世界坐标中1.0f,-1.0f,1.0f 问题到底出如今哪里? 原 ...

  9. Golden Pyramid

    Golden Pyramid Our Robo-Trio need to train for future journeys and treasure hunts. Stephan has built ...

  10. hdu 5432 Pyramid Split(二分搜索)

    Problem Description Xiao Ming is a citizen who's good at playing,he has lot's of gold cones which ha ...

随机推荐

  1. 一个用 C# 实现操作 XML 文件的公共类代码

    using System; using System.IO; using System.Data; using System.Xml; using System.Xml.XPath; namespac ...

  2. DES算法解析

    DES算法  美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告. 1977年1月,美国 ...

  3. 【转】SVN使用教程总结

    看到一篇超赞的文章,原链接:http://www.cnblogs.com/armyfai/p/3985660.html SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成 ...

  4. yii异常处理架构

    使用方法: use \yii\base\ErrorException; try { exec("curl http://xxx",$out,$retno); if(0 !== $r ...

  5. 【FAQ系列】Relay log 导致复制启动失败

    今天在使用冷备份文件重做从库时遇到一个报错,值得研究一下. 版本:MySQL5.6.27 一.报错现象 dba:(none)> start slave; ERROR (HY000): Slave ...

  6. Django ORM --- 建表、查询、删除基础

    1.什么是ORM ORM的全称是Object Relational Mapping,即对象关系映射.它的实现思想就是将关系数据库中表的数据映射成为对象,以对象的形式展现,这样开发人员就可以把对数据库的 ...

  7. LVS/NAT 配置

    LVS/NAT 配置 实验环境 三台主机:Linux Centos 6.4 32位 调度器Director:192.168.1.160(内网IP).192.168.2.20(公网IP) HTTP真实服 ...

  8. 20145230《java程序设计》 第四次实验报告

    20145230实验4 Android开发基础 实验内容 基于Android Studio开发简单的Android应用并部署测试; 了解Android组件.布局管理器的使用: 掌握Android中事件 ...

  9. 20145240《Java程序设计》第三周学习总结

    20145240 <Java程序设计>第三周学习总结 教材学习内容总结 个人感觉第三周的学习量还是很大的,需要学习的内容更难了而且量也变多了,所以投入了更多的时间到Java的学习中去. 第 ...

  10. iOS_AutoLayout自动布局

    目录: 一.什么是AutoLayout? 二.创建autoLayout的方法 三.VFL语言     一.什么是AutoLayout? Autolayout是一种“自动布局”技术,专门用来布局UI界面 ...