谷歌机器学习速成课程---2深入了解机器学习(Descending into ML)
1、线性回归
人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁。数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录。Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系。
首先建议您将数据绘制成图表,了解下数据的分布情况:
图 1. 每分钟的鸣叫声与温度(摄氏度)的关系。
毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而上升。鸣叫声与温度之间的关系是线性关系吗?是的,您可以绘制一条直线来近似地表示这种关系,如下所示:
图 2. 线性关系。
事实上,虽然该直线并未精确无误地经过每个点,但针对我们拥有的数据,清楚地显示了鸣叫声与温度之间的关系。只需运用一点代数知识,您就可以将这种关系写下来,如下所示:
其中:
- y 指的是温度(以摄氏度表示),即我们试图预测的值。
- m 指的是直线的斜率。
- x 指的是每分钟的鸣叫声次数,即输入特征的值。
- b 指的是 y 轴截距。
按照机器学习的惯例,您需要写一个存在细微差别的模型方程式:
其中:
- y′ 指的是预测标签(理想输出值)。
- b 指的是偏差(y 轴截距)。而在一些机器学习文档中,它称为 w0。
- w1 指的是特征 1 的权重。权重与上文中用 m 表示的“斜率”的概念相同。
- x1 指的是特征(已知输入项)。
要根据新的每分钟的鸣叫声值 x1 推断(预测)温度 y′,只需将 x1 值代入此模型即可。
下标(例如 w1 和 x1)预示着可以用多个特征来表示更复杂的模型。例如,具有三个特征的模型可以采用以下方程式:
2、训练与损失
简单来说,训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值。在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型;这一过程称为经验风险最小化。
损失是对糟糕预测的惩罚。也就是说,损失是一个数值,表示对于单个样本而言模型预测的准确程度。如果模型的预测完全准确,则损失为零,否则损失会较大。训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差。例如,图 3 左侧显示的是损失较大的模型,右侧显示的是损失较小的模型。关于此图,请注意以下几点:
- 红色箭头表示损失。
- 蓝线表示预测
图 3. 左侧模型的损失较大;右侧模型的损失较小。
请注意,左侧曲线图中的红色箭头比右侧曲线图中的对应红色箭头长得多。显然,相较于左侧曲线图中的蓝线,右侧曲线图中的蓝线代表的是预测效果更好的模型。
您可能想知道自己能否创建一个数学函数(损失函数),以有意义的方式汇总各个损失。
平方损失:一种常见的损失函数
接下来我们要看的线性回归模型使用的是一种称为平方损失(又称为 L2 损失)的损失函数。单个样本的平方损失如下:
均方误差 (MSE) 指的是每个样本的平均平方损失。要计算 MSE,请求出各个样本的所有平方损失之和,然后除以样本数量:

其中:
- (x,y) 指的是样本,其中
- x 指的是模型进行预测时使用的特征集(例如,温度、年龄和交配成功率)。
- y 指的是样本的标签(例如,每分钟的鸣叫次数)。
- prediction(x) 指的是权重和偏差与特征集 x 结合的函数。
- D 指的是包含多个有标签样本(即 (x,y))的数据集。
- N 指的是 D 中的样本数量。
虽然 MSE 常用于机器学习,但它既不是唯一实用的损失函数,也不是适用于所有情形的最佳损失函数。
谷歌机器学习速成课程---2深入了解机器学习(Descending into ML)的更多相关文章
- 机器学习入门 - Google机器学习速成课程 - 笔记汇总
机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...
- 机器学习入门 - Google的机器学习速成课程
1 - MLCC 通过机器学习,可以有效地解读数据的潜在含义,甚至可以改变思考问题的方式,使用统计信息而非逻辑推理来处理问题. Google的机器学习速成课程(MLCC,machine-learnin ...
- 谷歌机器学习速成课程---3降低损失 (Reducing Loss):学习速率
正如之前所述,梯度矢量具有方向和大小.梯度下降法算法用梯度乘以一个称为学习速率(有时也称为步长)的标量,以确定下一个点的位置.例如,如果梯度大小为 2.5,学习速率为 0.01,则梯度下降法算法会选择 ...
- 谷歌机器学习速成课程---3降低损失 (Reducing Loss):梯度下降法
迭代方法图(图 1)包含一个标题为“计算参数更新”的华而不实的绿框.现在,我们将用更实质的方法代替这种华而不实的算法. 假设我们有时间和计算资源来计算 w1 的所有可能值的损失.对于我们一直在研究的回 ...
- 谷歌机器学习速成课程---降低损失 (Reducing Loss):随机梯度下降法
在梯度下降法中,批量指的是用于在单次迭代中计算梯度的样本总数.到目前为止,我们一直假定批量是指整个数据集.就 Google 的规模而言,数据集通常包含数十亿甚至数千亿个样本.此外,Google 数据集 ...
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- Coursera台大机器学习基础课程学习笔记2 -- 机器学习的分类
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构 ...
- Coursera台大机器学习基础课程1
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitche ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
随机推荐
- 14. First Position of Target 【easy】
14. First Position of Target [easy] For a given sorted array (ascending order) and a targetnumber, f ...
- wp8页面导向
一般打开的是MainPage.xaml需要打开另一个页面的时候,用NavigationService.Navigate(uri);当然uri要配置是相对路径还是绝对路径Uri uri = new Ur ...
- windows 8.1 安装 .Net Framework 3.5
1.挂载IOS虚拟光驱 2.命令提示符(管理员) dism.exe /online /enable-feature /featurename:NetFX3 /Source:F:\sources\s ...
- sha1加密算法
public static void main(String[] args) throws UnsupportedEncodingException { /* * 获取jsapi_ticket * * ...
- htmt 5 素材
http://www.html5code.net/plus/list.php?tid=20
- 学习spring2--跟我一起学Spring 3(3)–使用Spring开发第一个HelloWorld应用
http://www.importnew.com/13246.html 首页 所有文章 资讯 Web 架构 基础技术 书籍 教程 我要投稿 更多频道 » - 导航条 - 首页 所有文章 资讯 ...
- fabric 自动化部署
fabric 项目发布和运维的工作相当机械,频率还蛮高,导致时间浪费在敲大量重复的命令上. 修复bug什么的,测试,提交版本库(2分钟),ssh到测试环境pull部署(2分钟),rsync到线上机器A ...
- hdu 4005(边双连通)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4005 思路:首先考虑边双连通分量,如果我们将双连通分量中的边删除,显然我们无法得到非连通图,因此要缩点 ...
- PHP 微信错误状态返回码说明
PHP 微信错误状态返回码说明 返回码说明 返回码 说明 -1 系统繁忙 0 请求成功 40001 验证失败 40002 不合法的凭证类型 40003 不合法的OpenID 40004 ...
- SQL Server 2008中如何为XML字段建立索引
from:http://blog.csdn.net/tjvictor/article/details/4370771 SQL Server中的XML索引分为两类:主XML 索引和辅助XML索引.其中辅 ...