hyxzc_背包九讲课件
f[i][j]=f[i-1][j],
综上所述,f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+c[i]);
j=m;j>0;j--)//思考,为什么是倒叙循环?
(j>=v[i]) f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+c[i]);
else f[i][j]=f[i-1][j];
② 用一维优化。//观察动态规划方程,我们不难发现,f[i][j]只与上一层有关。
f[j]=max(f[j];f[j-v[i]]+c[i]);
ci==4
f[4]==4; f[8]==f[4]+4;
对于一个物品,不止选一次。
j=1;j<=m;j++)//思考,为什么是倒叙循环?
(j>=v[i]) f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+c[i]);
else f[i][j]=f[i-1][j];
i=1;i<=n;i++)
for (int j=1;j<=m;j++)
f[j]=max(f[j],f[j-v[i]]+c[i]);
(int i=1;i<=n;i++)
{
scanf("%d%d%d",&v,&c,&k);
for (int j=1;j<=k;j++)
s[++cnt].v=v,s[cnt].c=c;
}
这样对于每一个自然数i都可以被组合出来。然后再采用01背包。
while (n--)
//接下来输入n中这个物品
{
scanf("%d%d%d", &vi, &ci, &ki);
//输入每种物品的数目和价值
for (int k=1; k<=ki; k<<=1)
//<<右移 相当于乘二
{
value[cnt]=k*vi;//体积
size[cnt++]=k*ci;//价值
ki-=k;
}
if
(ki>0)
{
value[cnt]=ki*vi;
size[cnt++]=ki*ci;
}
}
//对于i的物品,体积为vi,价值为ci,属于第ki个分组,对于每一个分组而言,最多选一件。
j=M->0
for
i=1->s[k]//当前分组中的所有元素
f[j]=max(f[j],f[j-v[i]]+v[i]);
i=1->s[k] 之外,这样才能保证每一个分组最多只会选1个物品。
read(m,n);
j:=0;
i:=1 to n do
begin
read(x1,y1,z1);
if z1=0 then begin inc(j);
inc(s[j,0].x); s[j,s[j,0].x].x:=x1; s[j,s[j,0].x].y:=x1*y1;
s[j,0].y:=i; end
else
begin
for k:=1 to j do
if
z1=s[k,0].y then
begin
z:=s[k,0].x;
for l:=1 to z do
begin
inc(s[k,0].x);
s[k,s[k,0].x].x:=s[k,l].x+x1;
s[k,s[k,0].x].y:=s[k,l].y+x1*y1;
end;
end;
end;
end;
s[0,0].x:=j;
多米诺骨牌
多米诺骨牌有上下2个方块组成,每个方块中有1~6个点。现有排成行的
f[i][j]//表示前i个骨牌,点数相差j的翻动次数。
for j=-5000->5000
f[i][j]=min(f[i][j],min(f[i-1][j-a[i]],f[i-1][j+a[i]]+1));
hyxzc_背包九讲课件的更多相关文章
- 【DP_背包专题】 背包九讲
这段时间看了<背包九讲>,在HUST VJUDGE上找到了一个题单,挑选了其中16道题集中做了下,选题全部是HDU上的题,大多是简单题.目前做了点小总结,大概提了下每道题的思路重点部分,希 ...
- 背包九讲PDF
本资料仅限个人学习交流使用,不得用于商业用途. 背包九讲PDF:https://pan.baidu.com/s/17rTxMwCo9iSTOW77yucdXQ 提取码:xbqa
- My背包九讲——概述
文章目录 什么是背包问题 背包问题的分类 [第一讲 01背包问题](https://blog.csdn.net/qq_34261446/article/details/103705068) 第二讲 完 ...
- 背包九讲 && 题目
★.背包求方案数的时候,多重背包是不行的,因为产生重复的背包会有多种情况. ★.背包记录路径的时候,其实是不行的,因为更新了12的最优解,如果它依赖于6这个背包,然后你后面改变了6这个背包,就GG 1 ...
- dd大牛的《背包九讲》
P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...
- 直接抱过来dd大牛的《背包九讲》来做笔记
P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...
- 摘自 dd大牛的《背包九讲》
P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...
- 背包九讲(Orz)
P01: 01背包问题 题目 有\(N\)件物品和一个容量为\(V\)的背包.第\(i\)件物品的费用是\(c[i]\),价值是\(w[i]\).求解将哪些物品装入背包可使这些物品的费用总和不超过背包 ...
- dd 在度娘上看到的一个大牛的《背包九讲》 (:
P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...
随机推荐
- Eclipse来push,fetch,rebase代码
如何与项目里的其他人一起合作项目,提交代码并更新呢?这里提出我比最近用到的两种工具:一种是Eclipse,另外一个是SourceTree.个人推荐从事Java开发的话,可以用Eclipse.当然,还有 ...
- The base command for the Docker CLI.
Description The base command for the Docker CLI. Child commands Command Description docker attach At ...
- Spring MVC 参数校验
转自:http://blog.csdn.net/eson_15/article/details/51725470 这一篇博文主要总结一下springmvc中对数据的校验.在实际中,通常使用较多是前端的 ...
- js错误处理
导致程序无法继续执行的异常状态称为错误. js中一旦发生错误,就会自动创建一个Error类型对象 js中有6中错误类型: SyntaxError 语法错误 ReferenceError 引用错误,找不 ...
- 【BZOJ2227】【ZJOI2011】看电影 [组合数][质因数分解]
看电影 Time Limit: 10 Sec Memory Limit: 259 MB[Submit][Status][Discuss] Description 到了难得的假期,小白班上组织大家去看 ...
- 2017年上海金马五校程序设计竞赛:Problem C : Count the Number (模拟)
Description Given n numbers, your task is to insert '+' or '-' in front of each number to construct ...
- 【Python实例一】使用minidom读取xml文件
前言:最近刚在廖雪峰老师的网站里学习了Python的基础内容,想着循序渐进地找点实例练练手,网上看到有很多相关资料,决定针对感兴趣的内容实际编码实践一下,昨天刚好看到有关使用Python来读取XML文 ...
- 无线路由器中WMM/Short GI/AP隔离各是什么功能, 开启时PC无法ping通手机.
无线路由器的WMM功能和开启ap隔离,以及开启ShortGI有什么用 无线路由器中有开启WMM.开启Short GI和开启AP隔离分别代表什么呢?这是我在我的TP-LINK无线路由器TL-WR84 ...
- CentOS RabbitMQ安装
1. 安装erlang,参考另外一篇文章: http://www.cnblogs.com/wanpengcoder/p/5287302.html 2. 安装libxslt和: yum install ...
- python学记笔记 2 异步IO
在IO编程中,我们知道CPU的速度远远快于磁盘,网络IO,在一个线程中,CPU执行速度的代码非常快,然而遇到IO操作就需要阻塞 需要等待IO操作完成才能继续下一步的动作.这种情况叫做同步IO 在IO操 ...