add by zhj: 有些地方不正确,有时间再改吧

原文:Python Cheat Sheet

Cheat sheet of Python. Some basic concepts for Python programmer need to know.

Python Naming Styles

# see: PEP8
# for public use
var # for internal use
_var # convention to avoid conflict keyword
var_ # for private use in class
__var # for protect use in class
_var_ # "magic" method or attributes
# ex: __init__, __file__, __main__
__var__ # for "internal" use throwaway variable
# usually used in loop
# ex: [_ for _ in range(10)]
# or variable not used
# for _, a in [(1,2),(3,4)]: print a
_

Check object attributes

# example of check list attributes
>>> dir(list)
['__add__', '__class__', ...]

Define a function __doc__

# Define a function document
>>> def Example():
... """ This is an example function """
... print "Example function"
...
>>> Example.__doc__
' This is an example function ' # Or using help function
>>> help(Example)

Check instance type

>>> ex = 10
>>> isinstance(ex,int)
True

Check, Get, Set attribute

>>> class example(object):
... def __init__(self):
... self.name = "ex"
... def printex(self):
... print "This is an example"
... # Check object has attributes
# hasattr(obj, 'attr')
>>> ex = example()
>>> hasattr(ex,"name")
True
>>> hasattr(ex,"printex")
True
>>> hasattr(ex,"print")
False # Get object attribute
# getattr(obj, 'attr')
>>> getattr(ex,'name')
'ex' # Set object attribute
# setattr(obj, 'attr', value)
>>> setattr(ex,'name','example')
>>> ex.name
'example'

Check inheritance

>>> class example(object):
... def __init__(self):
... self.name = "ex"
... def printex(self):
... print "This is an example"
...
>>> issubclass(example,object)
True

Check all global variables

# globals() return a dictionary
# {'variable name': variable value}
>>> globals()
{'args': (1, 2, 3, 4, 5), ...}

Check "callable"

>>> a = 10
>>> def fun():
... print "I am callable"
...
>>> callable(a)
False
>>> callable(fun)
True

Common Use "Magic"

# see python document: data model
# For command class
__main__
__name__
__file__
__module__
__all__
__dict__
__class__
__doc__
__init__(self, [...)
__str__(self)
__repr__(self)
__del__(self) # For Descriptor
__get__(self, instance, owner)
__set__(self, instance, value)
__delete__(self, instance) # For Context Manager
__enter__(self)
__exit__(self, exc_ty, exc_val, tb) # Emulating container types
__len__(self)
__getitem__(self, key)
__setitem__(self, key, value)
__delitem__(self, key)
__iter__(self)
__contains__(self, value) # Controlling Attribute Access
__getattr__(self, name)
__setattr__(self, name, value)
__delattr__(self, name)
__getattribute__(self, name) # Callable object
__call__(self, [args...]) # Compare related
__cmp__(self, other)
__eq__(self, other)
__ne__(self, other)
__lt__(self, other)
__gt__(self, other)
__le__(self, other)
__ge__(self, other) # arithmetical operation related
__add__(self, other)
__sub__(self, other)
__mul__(self, other)
__div__(self, other)
__mod__(self, other)
__and__(self, other)
__or__(self, other)
__xor__(self, other)

Arithmetic operators and Comparison

class example(object):

   def __init__(self,val1,val2):
self.val1 = val1
self.val2 = val2
def __add__(self,other):
_1 = self.val1 + other.val1
_2 = self.val2 + other.val2
return _1 + _2 def __sub__(self,other):
_1 = self.val1 - other.val1
_2 = self.val2 - other.val2
return _1 - _2 def __mul__(self,other):
_1 = self.val1 * other.val1
_2 = self.val2 * other.val2
return _1 * _2 def __div__(self,other):
_1 = self.val1 / other.val1
_2 = self.val2 / other.val2
return _1 / _2 def __mod__(self,other):
_1 = self.val1 % other.val1
_2 = self.val2 % other.val2
return _1 % _2 def __eq__(self,other):
if self.val1 == other.val1 and\
self.val2 == other.val2:
return True
return False def __ne__(self,other):
if self.val1 != other.val1 or\
self.val2 != other.val2:
return True
return False def __lt__(self,other):
if self.val1 < other.val1 or\
self.val2 < other.val2:
return True
return False def __gt__(self,other):
if self.val1 > other.val1 or\
self.val2 > other.val2:
return True
return False def __le__(self,other):
if self.val1 <= other.val1 or\
self.val2 <= other.val2:
return True
return False def __ge__(self,other):
if self.val1 >= other.val1 or\
self.val2 >= other.val2:
return True
return False # example result:
>>> ex1 = example(1.,2.)
>>> ex2 = example(3.,4.)
>>> ex1+ex2
10.0
>>> ex1-ex2
0.0
>>> ex1*ex2
24.0
>>> ex1/ex2
0.6666666666666666
>>> ex1%ex2
1.0
>>> ex1>ex2
False
>>> ex1<ex2
True
>>> ex1==ex2
False

Representations of your class behave

>>> class example(object):
... def __str__(self):
... return "example __str__"
... def __repr__(self):
... return "example __repr__"
...
>>> print str(example())
example __str__
>>> example()
example __repr__

Get list item "SMART"

>>> a = [1,2,3,4,5]
>>> a[0]
1
>>>a[-1]
5
>>> a[0:]
[1,2,3,4,5]
>>> a[:-1]
[1,2,3,4] # a[start:end:step]
>>> a[0:-1:2]
[1,3] # using slice object
# slice(start,end,step)
>>> s = slice(0,-1,2)
>>> a[s]
[1,3] # Get index and item in loop
>>> a = range(3)
>>> for idx,item in enumerate(a):
... print (idx,item),
...
(0, 0) (1, 1) (2, 2) # with filter
>>> [x for x in range(5) if x>1]
[2, 3, 4]
>>> _ = ['','',3,'Hello',4]
>>> f = lambda x: isinstance(x,int)
>>> filter(f,_)
[3, 4]

Get dictionary item "SMART"

# get dictionary all keys
>>> a={"":1,"":2,"":3}
>>> b={"":2,"":3,"":4}
>>> a.keys()
['', '', ''] # get dictionary key and value as tuple
>>> a.items()
[('', 1), ('', 3), ('', 2)] # find same key between two dictionary
>>> [_ for _ in a.keys() if _ in b.keys()]
['', '']
# better way
>>> c = set(a).intersection(set(b))
>>> list(c)
['', '']
# or
>>> [_ for _ in a if _ in b]
['', ''] # update dictionary
>>> a.update(b)
>>> a
{'': 1, '': 3, '': 2, '': 4}

Set a list/dict "SMART"

# get a list with init value
>>> ex = [0]*10
>>> ex
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # using generator
>>> [x for x in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> fn = lambda x: x**2
>>> [fn(x) for x in range(5)]
[0, 1, 4, 9, 16]
>>> {'{0}'.format(x): x for x in range(3)}
{'': 1, '': 0, '': 2} # using builtin function "map"
>>> map(fn,range(5))
[0, 1, 4, 9, 16]

Delegating Iteration (__iter__)

# __iter__ return an iterator object
# Be careful: list is an "iterable" object not an "iterator"
>>> class example(object):
... def __init__(self,list_):
... self._list = list_
... def __iter__(self):
... return iter(self._list)
...
>>> ex = example([1,2,3,4,5])
>>> for _ in ex: print _,
...
1 2 3 4 5

Using Generator as Iterator

# see: PEP289
>>> a = (_ for _ in range(10))
>>> for _ in a: print _,
...
0 1 2 3 4 5 6 7 8 9 # equivalent to
>>> def _gen():
... for _ in range(10):
... yield _
...
>>> a = _gen()
>>> for _ in a: print _,
...
0 1 2 3 4 5 6 7 8 9

Emulating a list

>>> class emulist(object):
... def __init__(self,list_):
... self._list = list_
... def __repr__(self):
... return "emulist: "+str(self._list)
... def append(self,item):
... self._list.append(item)
... def remove(self,item):
... self._list.remove(item)
... def __len__(self):
... return len(self._list)
... def __getitem__(self,sliced):
... return self._list[sliced]
... def __setitem__(self,sliced,val):
... self._list[sliced] = val
... def __delitem__(self,sliced):
... del self._list[sliced]
... def __contains__(self,item):
... return item in self._list
... def __iter__(self):
... return iter(self._list)
...
>>> emul = emulist(range(5))
>>> emul
emulist: [0, 1, 2, 3, 4]
>>> emul[1:3]
[1, 2]
>>> emul[0:4:2]
[0, 2]
>>> len(emul)
5
>>> emul.append(5)
>>> emul
emulist: [0, 1, 2, 3, 4, 5]
>>> emul.remove(2)
>>> emul
emulist: [0, 1, 3, 4, 5]
>>> emul[3] = 6
>>> emul
emulist: [0, 1, 3, 6, 5]
>>> 0 in emul
True

Emulating a dictionary

>>> class emudict(object):
... def __init__(self,dict_):
... self._dict = dict_
... def __repr__(self):
... return "emudict: "+str(self._dict)
... def __getitem__(self,key):
... return self._dict[key]
... def __setitem__(self,key,val):
... self._dict[key] = val
... def __delitem__(self,key):
... del self._dict[key]
... def __contains__(self,key):
... return key in self._dict
... def __iter__(self):
... return iter(self._dict.keys())
...
>>> _ = {"":1,"":2,"":3}
>>> emud = emudict(_)
>>> emud
emudict: {'': 1, '': 3, '': 2}
>>> emud['']
1
>>> emud[''] = 5
>>> emud
emudict: {'': 1, '': 3, '': 2, '': 5}
>>> del emud['']
>>> emud
emudict: {'': 1, '': 3, '': 5}
>>> for _ in emud: print emud[_],
...
1 3 5
>>> '' in emudict
True

Decorator

# see: PEP318
>>> def decor(func):
... def wrapper(*args,**kwargs):
... print "wrapper"
... func()
... print "-------"
... return wrapper
...
>>> @decor
... def example():
... print "Example"
...
>>> example()
wrapper
Example
------- # equivalent to
>>> def example():
... print "Example"
...
>>> example = decor(example)
>>> example()
wrapper
Example
-------

Decorator with arguments

>>> def example(val):
... def decor(func):
... def wrapper(*args,**kargs):
... print "Val is {0}".format(val)
... func()
... return wrapper
... return decor
...
>>> @example(10)
... def undecor():
... print "This is undecor func"
...
>>> undecor()
Val is 10
This is undecor func # equivalent to
>>> def undecor():
... print "This is undecor func"
...
>>> d = example(10)
>>> undecor = d(undecor)
>>> undecor()
Val is 10
This is undecor func

for: exp else: exp

# see document: More Control Flow Tools
# forloop’s else clause runs when no break occurs
>>> for _ in range(5):
... print _,
... else:
... print "\nno break occur"
...
0 1 2 3 4
no break occur
>>> for _ in range(5):
... if _ % 2 ==0:
... print "break occur"
... break
... else:
... print "else not occur"
...
break occur
# above statement equivalent to
flag = False
for _ in range(5):
if _ % 2 == 0:
flag = True
print "break occur"
break
if flag == False:
print "else not occur"

Lambda function

# lambda [input]: expression
>>> fn = lambda x: x**2
>>> fn(3)
9
>>> (lambda x:x**2)(3)
9
>>> (lambda x: [x*_ for _ in range(5)])(2)
[0, 2, 4, 6, 8]
>>> (lambda x: x if x>3 else 3)(5)
5 # multiline lambda example
>>> (lambda x:
... True
... if x>0
... else
... False)(3)
True

Function with option arguments (*args, **kwargs)

>>> def example(a,b=None,*args,**kwargs):
... print a, b
... print args
... print kwargs
...
>>> example(1,"var",2,3,word="hello")
1 var
(2, 3)
{'word': 'hello'}
>>> _args = (1,2,3,4,5)
>>> _kwargs = {"":1,"":2,"":3}
>>> example(1,"var",*_args,**_kwargs)
1 var
(1, 2, 3, 4, 5)
{'': 1, '': 3, '': 2}

Callable object

>>> class calobj(object):
... def example(self):
... print "I am callable!"
... def __call__(self):
... self.example()
...
>>> ex = calobj()
>>> ex()
I am callable!

"with" statement (Context Manager)

# replace try: ... finally: ...
# see: PEP343
# common use in open and close
# example:
import socket
class Socket(object):
def __init__(self,host,port):
self.host = host
self.port = port
def __enter__(self):
sock = socket.socket(
socket.AF_INET,
socket.SOCK_STREAM
)
sock.bind((self.host,self.port))
sock.listen(5)
self.sock = sock
return self.sock def __exit__(self,*exc_info):
if exc_ty is not None:
import traceback
traceback.print_exception(
*exc_info
)
self.sock.close() if __name__=="__main__":
host = 'localhost'
port 5566
with Socket(host,port) as s:
while True:
conn, addr = s.accept()
msg = conn.recv(1024)
print msg
conn.send(msg)
conn.close()

Using "contextlib" implement Context Manager

from contextlib import contextmanager
@contextmanager
def opening(filename):
f = open(filename)
try:
yield f
finally:
f.close() with opening('example.txt','r') as fd:
fd.read()

Using "with" statement open file

>>> with open("example",'r') as f:
... content = f.read()

Property - Managed attributes

class example(object):
def __init__(self,value):
self.val = value @property
def val(self):
return self._val @val.setter
def val(self,value):
if not isintance(value,int):
raise TypeError("Expect int")
self._val = value @ val.deleter
def val(self):
del self._val # example result:
>>> ex = example(123)
>>> ex.val = "str"
Traceback (most recent call last):
File "", line 1, in
File "test.py", line 12, in val
raise TypeError("Expect int")
TypeError: Expect int

Computed attribures - Using property

# Concept: Attribure's value is not store in memory. Computing the value only when we need.
>>> class example(object):
... @property
... def square3(self):
... return 2**3
...
>>> ex = example()
>>> ex.square3
8

Descriptor - Another choice to manage attributes

# Descriptor
>>> class Integer(object):
... def __init__(self,name):
... self._name = name
... def __get__(self,inst,cls):
... if inst is None:
... return self
... else:
... return inst.__dict__[self._name]
... def __set__(self,inst,value):
... if not isinstance(value,int):
... raise TypeError("Expected INT")
... inst.__dict__[self._name] = value
... def __delete__(self,inst):
... del inst.__dict__[self._name]
...
>>> class example(object):
... x = Integer('x')
... def __init__(self,val):
... self.x = val
...
>>> ex = example(1)
>>> ex = example("str")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in __init__
File "<stdin>", line 11, in __set__
TypeError: Expected an int

@staticmethod, @classmethod

# @classmethod: bound to class
# @staticmethod: like python function but in class
>>> class example(object):
... @classmethod
... def clsmethod(cls):
... print "I am classmethod"
... @staticmethod
... def stmethod():
... print "I am staticmethod"
... def instmethod(self):
... print "I am instancemethod"
...
>>> ex = example()
>>> ex.clsmethod()
I am classmethod
>>> ex.stmethod()
I am staticmethod
>>> ex.instmethod()
I am instancemethod
>>> example.clsmethod()
I am classmethod
>>> example.stmethod()
I am staticmethod
>>> example.instmethod()
Traceback (most recent call last):
File "", line 1, in
TypeError: unbound method instmethod() ...

Abstract method - Meta class

# usually using in define methods but not implement
from abc import ABCMeta, abstractmethod >>> class base(object):
... __metaclass__ = ABCMeta
... @abstractmethod
... def absmethod(self):
... """ Abstract method """
...
>>> class example(base):
... def absmethod(self):
... print "abstract"
...
>>> ex = example()
>>> ex.absmethod()
abstract # another better way to define a meta class
>>> class base(object):
... def absmethod(self):
... raise NotImplementedError
...
>>> class example(base):
... def absmethod(self):
... print "abstract"
...
>>> ex = example()
>>> ex.absmethod()
abstract

全面Python小抄(转)的更多相关文章

  1. 一个cheat命令 == Linux命令小抄大全

    本文介绍一个Linux超级命令,有了这个命令,你就可以开开心心的使用linux上的各种命令了.当你要执行一个linux命令,在这个命令参数选项众多时,你一般怎么做?对,我们大多数人都会去求助man命令 ...

  2. Python小工具--删除svn文件

    有的时候我们需要删除项目下的svn相关文件,但是SVN会在所有的目录下都创建隐藏文件.svn,手工一个个目录查找然后删除显然比较麻烦.所以这里提供了一个Python小工具用于批量删除svn的相关文件: ...

  3. Windows平台Atom编辑器的常用快捷键小抄Cheat Sheet

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:Windows平台Atom编辑器的常用快捷键小抄Cheat Sheet.

  4. python小练习(自己瞎倒腾)

    python小练习 在网上无意中看到一个问题,心血来潮写了写,觉得比较有意思,以后遇到这种有意思的小练习也记录下. #!/usr/bin/env python # -*- coding:utf-8 - ...

  5. python小练习之二

    title: python小练习之二 tags: 新建,模板,小书匠 grammar_cjkRuby: true --- python小练习之二 需求:实现用户登录,用户名和密码保存到文件里,连续输入 ...

  6. Python小代码_2_格式化输出

    Python小代码_2_格式化输出 name = input("name:") age = input("age:") job = input("jo ...

  7. Python小代码_1_九九乘法表

    Python小代码_1_九九乘法表 max_num = 9 row = 1 while row <= max_num: col = 1 while col <= row: print(st ...

  8. python小练习---TCP服务器端

    针对于上一篇分享python小练习---TCP客户端 http://www.cnblogs.com/zhaijiahui/p/6926197.html我继续按书中内容,向下进行这里需要强调一个事py3 ...

  9. python小练习:使用循环和函数实现一个摇骰子小游戏。游戏规则如下:游戏开始,首先玩家选择Big or Small(押大小),选择完成后开始摇三个骰子,计算总值,11<=总值<=18为“大”,3<=总值<=10为“小”。然后告诉玩家猜对或者是猜错的结果。

    python小练习:使用循环和函数实现一个摇骰子小游戏.游戏规则如下:游戏开始,首先玩家选择Big or Small(押大小),选择完成后开始摇三个骰子,计算总值,11<=总值<=18为“ ...

随机推荐

  1. iOS开发-在Swift里使用AFNetworking方法

    在OC里使用惯了AFNetworking,比较喜欢这一个第三方库,在别的途径里得知可以在Swift里使用AFNetworking.但是那个时候我不知道具体的操作是怎样的,于是我只能去百度.GOOGLE ...

  2. <转>程序员的心理疾病

    注:本文转自大神王垠的博客 原文出处 http://www.yinwang.org/blog-cn/2014/02/09/programmer-mental/ 说实话,虽然似乎为之奋斗了十多年,在真正 ...

  3. CF Codeforces Round #256 (Div. 2) D (448D) Multiplication Table

    二分!!! AC代码例如以下: #include<iostream> #include<cstring> #include<cstdio> #define ll l ...

  4. GoogLeNet模型的微调

    我从零开始训练了GoogLeNet模型. 但它没有给我带来希望的结果. 作为替代,我想对我的数据集中的GoogLeNet模型进行微调. 有谁知道我应该遵循什么步骤? 采纳答案: 假设你正在尝试做图像分 ...

  5. Redis之SkipList数据结构

    0.前言 Redis中有序集合zset需要使用skiplist作为存储数据结构, 关于skiplist数据结构描述可以查询wiki, 本文主要介绍Redis实现的skiplist的细节. 1.数据结构 ...

  6. docker mongo backup 不用找啦,就在这里。

    rm -rf /tmp/mongodump && mkdir /tmp/mongodumpdocker run -it --rm --link lps-mongodb:mongo -v ...

  7. Codeforces Round #277 (Div. 2)---A. Calculating Function (规律)

    Calculating Function time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. 28. Search a 2D Matrix 【easy】

    28. Search a 2D Matrix [easy] Write an efficient algorithm that searches for a value in an mx n matr ...

  9. composer 初始化办法和方法

    php -r "readfile('https://getcomposer.org/installer');" > composer-setup.php php -r &qu ...

  10. imx6中iomux IO复用

    IOMUX Controller (IOMUXC) IO多路复用控制器1.overviewThe IOMUX Controller (IOMUXC), together with the IOMUX, ...