Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1566

Solution:

思路十分精奇的一道题目

题目要求的是$\sum_{i=1}^k a_i^2$

明显发现$a_i$是难以求解的,于是考虑如何整体处理$a_i^2$

由于$a_i^2=a_i*a_i$,

因此$a_i^2$可以认为是第一人选出的方案数$a_i$乘上第二人选出的方案数$a_i$

那么只要统计两人选择相同序列的情况数即可

设dp[i][j][k]为取i个字符,两人在上方取到j,k个字符时相同的方案数

接下来再用滚动数组优化下转移就好了

Code:

//by NewErA
#include <bits/stdc++.h> using namespace std;
const int MOD=; const int MAXN=; int n,m,dp[][MAXN][MAXN],up[MAXN],down[MAXN],t=;
char s1[MAXN],s2[MAXN]; int main()
{
scanf("%d%d",&n,&m);
scanf("%s",s1);scanf("%s",s2);
for (int i=;i<n;i++)
up[n-i]=s1[i]-'A';
for (int i=;i<m;i++)
down[m-i]=s2[i]-'A';
dp[][][]=;
for(int i=;i<n+m;i++,t^=)
for(int j=;j<=min(n,i);j++)
for(int k=;k<=min(n,i);k++)
if(dp[t][j][k])
{
int temp=dp[t][j][k];
if(j<n && k<n && up[j+]==up[k+]) (dp[t^][j+][k+]+=temp)%=MOD;
if(j<n && i-k<m && up[j+]==down[i-k+]) (dp[t^][j+][k]+=temp)%=MOD;
if(i-j<m && k<n && down[i-j+]==up[k+]) (dp[t^][j][k+]+=temp)%=MOD;
if(i-j<m && i-k<m && down[i-j+]==down[i-k+]) (dp[t^][j][k]+=temp)%=MOD;
dp[t][j][k]=;
}
cout << dp[t][n][n];
return ;
}

Review:

1、如果要求解某难以求解之数的多次幂时,

考虑将多次幂转化为降次的其它问题求解

(二次幂转化为两个一次问题的结果相乘)

2、对DP的优化:

如果为同时求解两个同样问题的DP,维护步数和即可,由$O(n^4)$降到$O(n^3)$

如果每次只用到上一层结果,使用滚动数组优化空间

[BZOJ 1566] 管道取珠的更多相关文章

  1. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

  2. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  3. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  4. BZOJ 1566 【NOI2009】 管道取珠

    题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...

  5. 【BZOJ1566】【NOI2009】管道取珠(动态规划)

    [BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...

  6. 动态规划:NOI 2009 管道取珠

    [NOI2009] 管道取珠 输入文件:ballb.in   输出文件:ballb.out   简单对比 时间限制:1 s   内存限制:512 MB #include <iostream> ...

  7. BZOJ1566 【NOI2009】管道取珠

    题面 这是一道DP神题,直到我写下这句题解时也没有想明白…… 首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) .这道题一个巧妙的地方 ...

  8. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  9. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

随机推荐

  1. 【COGS 2051】王者之剑 最小割

    这个其实就是在说明相邻的点不能取,我们发现只要其满足这个条件他总能走出来,那么我们就最小割就是了,我们先黑白染色,S 一排黑点 一排白点 T 对于相邻的点我们就直接中间连INF,于是就满足只要一个点选 ...

  2. 版本7以上IE以文件夹视图方式打开FTP的解决

    一.问题的提出 版本7以上IE浏览器打开FTP时只出现列表 二.问题的解决 设置ie浏览器选项即可,以ie9为例,设置步骤如下: 1.启动ie,点击设置按钮,弹出菜单选择internet选项命令: 2 ...

  3. power designer 绘制E-R 图

    总体概括:本篇主要先介绍E-R图的一些基本概念,然后介绍怎么绘制E-R图,特别是用power designer 的反向工程怎么把表中对字段的注释也展示出来. 1.E-R图的基本概念: E-R图就是en ...

  4. IDEA 用maven创建web项目编译时不能发布resources中的文件

    1.在pom.xml加入 <build> <resources> <resource> <directory>${basedir}/src/main/j ...

  5. jquery中:input和input的区别

    :input表示选择表单中的input,select,textarea,button元素, input仅仅选择input元素. <button>和<input type=" ...

  6. 五分钟搞懂Vuex

    这段时间一直在用vue写项目,vuex在项目中也会依葫芦画瓢使用,但是总有一种朦朦胧胧的感觉.于是决定彻底搞懂它. 看了一下午的官方文档,以及资料,才发现vuex so easy! 作为一个圈子中的人 ...

  7. JavaScript 页面间传值

    转自:http://blog.csdn.net/qq380107165/article/details/7330612 一:JavaScript静态页面值传递之URL篇 能过URL进行传值,把要传递的 ...

  8. Java并发(11)- 有关线程池的10个问题

    引言 在日常开发中,线程池是使用非常频繁的一种技术,无论是服务端多线程接收用户请求,还是客户端多线程处理数据,都会用到线程池技术,那么全面的了解线程池的使用.背后的实现原理以及合理的优化线程池的大小等 ...

  9. wget.vbs & wget.ps1

    Wget-like tool for file transfer when do post exploitation. CODE echo strUrl = WScript.Arguments.Ite ...

  10. Python学习笔记 - day2 - PyCharm的基本使用

    什么是IDE 开始学习的小白同学,一看到这三个字母应该是懵逼的,那么我们一点一点来说. 既然学习Python语言我们就需要写代码,那么代码写在哪里呢? 在记事本里写 在word文档里写 在sublim ...