【题目大意】

求第k个不是完全平方数或完全平方数整数倍的数。

【思路】

  由于μ(i)*(n/i^2)=n,可以直接从1开始,得出非完全平方数/完全平方数倍数的数的个数

注意一下二分的写法,这里用的是我一直比较喜欢的一种二分写法:

int lb=下界-1,ub=上界

while (ub-lb>1)

{

  int mid=(lb+ub)>>1;

  if (a[mid]>=k) ub=mid; else lb=mid;

}

ans=ub;

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll MAXN=+;
const ll INF=0x7fffffff;
int T;
ll k;
int miu[MAXN];
ll prime[MAXN];
int pnum=; void get_miu()
{
for (int i=;i<MAXN;i++) miu[i]=-INF;
miu[]=;
for (int i=;i<MAXN;i++)
{
if (miu[i]==-INF)
{
miu[i]=-;
prime[++pnum]=i;
}
for (int j=;j<=pnum;j++)
{
if (i*prime[j]>=MAXN) break;
if (i%prime[j]==) miu[i*prime[j]]=;
else miu[i*prime[j]]=-miu[i];
}
}
} ll square(ll x)
{
ll res=;
for (int i=;i*i<=x;i++) res+=miu[i]*(x/(i*i));
return res;
} ll get_ans()
{
ll lb=-,ub=MAXN*MAXN;
while (ub-lb>)
{
ll mid=(lb+ub)>>;
ll nowk=square(mid);
if (nowk>=k) ub=mid;
else lb=mid;
}
return ub;
} int main()
{
get_miu();
scanf("%d",&T);
for (int i=;i<T;i++)
{
scanf("%lld",&k);
printf("%lld\n",get_ans());
}
return ;
}

【整体二分+莫比乌斯函数+容斥原理】BZOJ2440的更多相关文章

  1. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  2. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  3. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  4. 【BZOJ 2440】【中山市选 2011】完全平方数 莫比乌斯函数+容斥原理

    网上PoPoQQQ的课件: •题目大意:求第k个无平方因子数 •无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数 •首先二分答案 问题转化为求[1,x]之间有 ...

  5. 【BZOJ 2986】 莫比乌斯函数+容斥原理

    2986: Non-Squarefree Numbers Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 156 Descri ...

  6. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  7. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  8. [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]

    题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...

  9. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

随机推荐

  1. Linux设置虚拟内存-创建和启用Swap交换区

    如果你的服务器的总是报告内存不足,并且时常因为内存不足而引发服务被强制kill的话,在不增加物理内存的情况下,启用swap交换区作为虚拟内存是一个不错的选择,如果是SSD硬盘,正常读写速度都在300M ...

  2. nginx重要配置项简要说明

    1.重要配置项 以下是一个完整的nginx配置信息. #================================以下是全局配置项 #指定运行nginx的用户和用户组,默认情况下该选项关闭(关闭 ...

  3. codeforces739C - Skills &&金中市队儿童节常数赛

    http://codeforces.com/problemset/problem/739/C 先上链接 这道题 对于蒟蒻的我来说还是很有难度的 调了很久 对于我的代码 mx2是答案 mx1代表单调 m ...

  4. [POJ1082&POJ2348&POJ1067&POJ2505&POJ1960]简单博弈题总结

    鉴于时间紧张...虽然知道博弈是个大课题但是花一个上午时间已经极限了... 希望省选过后再回过头来好好总结一遍吧. 接下来为了看着顺眼一点...还是按照难度顺序吧   POJ1082 一道最简单的博弈 ...

  5. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  6. ThinkPHP 多应用多模块建立方式

    ThinkPHP3.2.2及以后版本同一应用多模块和多应用多模块的设计已经比以前的版本更加简单快捷. 注:入口文件为index.php,内容为: <?php // +-------------- ...

  7. wikioi 1245最小的N个和

    2013-09-08 10:12 LRJ的算法竞赛入门经典训练指南里有类似的题,原题要难很多,p189页 读入A,B两组中的所有数后,建立N个有序表: A1+B1<A2+B1<A3+B1& ...

  8. 利用os、hash模块生成目录下所有文件的md5

    hashlib用于对字符串或者文件进行加密. 使用方法1: hashlib.md5('str').hexdigest() 使用MD5对str进行加密,使用hexdigest(),16进制的方式打印   ...

  9. C/C++里的const(1)

    首先来看这样一段程序: #include<iostream> using namespace std; int main(){ char *s = "hello world&qu ...

  10. POJ3468(线段树区间增加,区间求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 81519   ...