\(SAM\)上匹配

我们就是需要找到两个串的最长公共子串

先对其中一个串建出\(SAM\),之后我们把另一个串放到上面跑

如果当前在\(SAM\)的状态是\(now\),下一个字符是\(c\),匹配出的的长度为\(L\)

  • 如果\(now\)有\(c\)这个转移,我们就转移过去,\(L\)++

  • 如果没有我们就跳\(link\),知道跳到有这个转移为止,同时把\(L\)搞成新状态的\(len\)

这样做就好了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define LL long long
#define maxn 500005
#define max(a,b) ((a)>(b)?(a):(b))
char S[maxn>>1],T[maxn>>1];
int lst=1,n,m,len[maxn],pre[maxn],son[maxn][26];
int now=1,L,ans,cnt=1;
inline void ins(int c)
{
int f=lst,p=++cnt; lst=p;
len[p]=len[f]+1;
while(f&&!son[f][c]) {son[f][c]=p;f=pre[f];}
if(!f) {pre[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {pre[p]=x;return;}
int y=++cnt;
len[y]=len[f]+1;pre[y]=pre[x];pre[x]=pre[p]=y;
for(int i=0;i<26;i++) son[y][i]=son[x][i];
while(f&&son[f][c]==x) {son[f][c]=y;f=pre[f];}
}
inline void q(int c)
{
if(son[now][c]) {now=son[now][c];L++;ans=max(ans,L);return;}
while(now&&!son[now][c]) now=pre[now];
if(!now) {now=1,L=0;return;}
L=len[now]+1;now=son[now][c];ans=max(ans,L);
}
int main()
{
scanf("%s",S+1);n=strlen(S+1);
for(int i=1;i<=n;i++) ins((int)(S[i]-'a'));
scanf("%s",T+1);n=strlen(T+1);
for(int i=1;i<=n;i++) q((int)(T[i]-'a'));
printf("%d\n",ans);
return 0;
}

SP1811 【LCS - Longest Common Substring】的更多相关文章

  1. 【题解】SP10570 【LONGCS - Longest Common Substring】

    \(\color{Red}{Link}\) \(\text{Solution:}\) 还是\(\text{Suffix Tree.}\) 根据\(\color{Blue}{Link}\)我们可以得到一 ...

  2. 【SP1811】LCS - Longest Common Substring

    [SP1811]LCS - Longest Common Substring 题面 洛谷 题解 建好后缀自动机后从初始状态沿着现在的边匹配, 如果失配则跳它的后缀链接,因为你跳后缀链接到达的\(End ...

  3. 题解 SP1812 【LCS2 - Longest Common Substring II 】

    对于本题这样的多字符串的子串匹配问题,其实用广义后缀自动机就可以很好的解决,感觉会比普通的后缀自动机做法方便一些. 首先记录出每个节点被多少个字符串更新,也就是记录每个节点有多少个字符串能到达它,可以 ...

  4. 后缀自动机(SAM) :SPOJ LCS - Longest Common Substring

    LCS - Longest Common Substring no tags  A string is finite sequence of characters over a non-empty f ...

  5. spoj1811 LCS - Longest Common Substring

    地址:http://www.spoj.com/problems/LCS/ 题面: LCS - Longest Common Substring no tags  A string is finite ...

  6. spoj 1811 LCS - Longest Common Substring (后缀自己主动机)

    spoj 1811 LCS - Longest Common Substring 题意: 给出两个串S, T, 求最长公共子串. 限制: |S|, |T| <= 1e5 思路: dp O(n^2 ...

  7. SPOJ LCS Longest Common Substring 和 LG3804 【模板】后缀自动机

    Longest Common Substring 给两个串A和B,求这两个串的最长公共子串. no more than 250000 分析 参照OI wiki. 给定两个字符串 S 和 T ,求出最长 ...

  8. 【刷题】SPOJ 1811 LCS - Longest Common Substring

    A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the s ...

  9. SPOJ 1811 LCS - Longest Common Substring

    思路 和SPOJ 1812 LCS2 - Longest Common Substring II一个思路,改成两个串就有双倍经验了 代码 #include <cstdio> #includ ...

随机推荐

  1. 远程上传下载文件-Xftp5

    Xftp5下载 链接:https://pan.baidu.com/s/1Wzso_Q7mPy5uGOUlripEWg 密码:xfx9 安装选择家庭版 由于21端口没有开,所以不能选FTP,  选择SF ...

  2. ZABBIX 监控基本报警故障

    CPU触发器: 1)Processor load is too high on {HOST.NAME} {HOST.NAME}上处理器负载太高 触发器表达式:{Zabbix server:system ...

  3. 【3dsMax安装失败,如何卸载、安装3dMax 2011?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  4. node之Express框架

    Express是node的框架,通过Express我们快速搭建一个完整的网站,而不再只是前端了!所以Express还是非常值得学习的! express有各种中间件,我们可以在官方网站查询其用法. Ex ...

  5. JUnit测试框架的使用

    1.学习Junit框架的使用 可通过以下两个示例进行学习. A.Junit使用方法示例1 1)把Junit引入当前项目库中 新建一个 Java 工程—coolJUnit,打开项目coolJUnit 的 ...

  6. JavaScript数据类型 数据转换

    JavaScript数据类型分为两种:原始类型和对象类型,原始类型有:number(数字).string(文本).boolean(布尔值).null(空).undefined(未定义):对象类型有:A ...

  7. 正则表达式过滤联系方式,微信手机号QQ等

    有些输入不允许用户输入联系方式.可以使用以下正则表达式来判断是否输入敏感信息 var reg = new RegExp("(微信|QQ|qq|weixin|1[0-9]{10}|[a-zA- ...

  8. 到底什么是promise?有什么用promise怎么用

    相信很多人刚接触promise都会晕,但学会后却离不开它,本文详细介绍一下promise,promise解决的问题,帮助新手快速上手 [扫盲] 什么是promise? promise是一种约定,并非一 ...

  9. web.config节点

    1.clientCache 源码: <system.webServer> <staticContent> <clientCache cacheControlMode=&q ...

  10. idea 正则全局替换文件文本

    上一遍写到了log4j2分层输出日志的内容,但因为项目原先采用的log4j,现使用log4j2,需将原有log4j的代码进行替换,以前的代码类似如下: private static final Log ...