SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)
GSS2 - Can you answer these queries II
Being a completist and a simplist, kid Yang Zhe cannot solve but
get Wrong Answer from most of the OI problems. And he refuse to
write two program of same kind at all. So he always failes in
contests.
When having a contest, Yang Zhe looks at the score of every
problems first. For the problems of the same score, Yang Zhe will
do only one of them. If he's lucky enough, he can get all the scores
wanted.
Amber is going to hold a contest in SPOJ. She has made a list of
N candidate problems, which fit Yang Zhe very well. So Yang
Zhe can solve any problem he want. Amber lined up the problems,
began to select. She will select a subsequence of the list as the
final problems. Being A girl of great compassion, she'd like to
select such a subsequence (can be empty) that Yang Zhe will get the
maximal score over all the possible subsequences.
Amber found the subsequence easily after a few minutes. To make
things harder, Amber decided that, Yang Zhe can take this contest
only if Yang Zhe can answer her Q questions. The question is:
if the final problems are limited to be a subsequence
of list[X..Y] (1 <= X <= Y <= N),
what's the maximal possible score Yang Zhe can get?
As we know, Yang Zhe is a bit idiot (so why did he solve the
problem with a negative score?), he got Wrong Answer again... Tell
him the correct answer!
Input
- Line 1: integer N (1 <= N <= 100000);
- Line 2: N integers denoting the score of each problem,
each of them is a integer in range [-100000, 100000]; - Line 3: integer Q (1 <= Q <= 100000);
- Line 3+i (1 <= i <= Q): two
integers X and
Y denoting the ith question.
Output
- Line i: a single integer, the answer to the ith
question.
Example
Input:
9
4 -2 -2 3 -1 -4 2 2 -6
3
1 2
1 5
4 9 Output:
4
5
3
Warning: large input/output data,be careful with certain languages
给出A[1],A[2]...,A[N], 有Q次询问,每次询问包含x,y,
需要回答Max{a[i]+a[i+1]+...+a[j]; x <= i <= j <= y},相同的数只能计算一次。
看到题目还以为是DP,根本没往线段树上想,看了题解感觉好神奇啊。。。
先将查询区间离线并且排序(类似莫队算法),然后循环 i =1~n,对于每一个a[i],插入进线段树更新节点。而线段树的每一个节点维护四个数组。sum[rt]表示以a[i]结尾的
最大的后缀和,presum[rt]表示1,~n中最大的区间和(a[j]+...+a[k],1<=j<=k<=i),lazy[rt]为懒惰标记,做过区间修改的应该知道,prelazy[rt]则为此区间最大的lazy。
然后就是线段树的事了。代码不难,应该很好理解,虽然我花了两天才看懂=_=
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int N=2e5+;
const int M=N*N+;
ll a[N];
ll num,m,n,tot=;
ll sum[N*],presum[N*],ans[N];
ll lazy[N*],prelazy[N*],pre[N*];
struct man{
ll l,r,id;
bool operator < (const man & b) const {
return r < b.r;
}
}q[N];
void Push_down(int rt) {
if(lazy[rt]||prelazy[rt]) {
presum[rt*]=max(presum[rt*],sum[rt*]+prelazy[rt]);
prelazy[rt*]=max(prelazy[rt*],lazy[rt*]+prelazy[rt]);
sum[rt*]+=lazy[rt];lazy[rt*]+=lazy[rt]; presum[rt*+]=max(presum[rt*+],sum[rt*+]+prelazy[rt]);
prelazy[rt*+]=max(prelazy[rt*+],lazy[rt*+]+prelazy[rt]);
sum[rt*+]+=lazy[rt];lazy[rt*+]+=lazy[rt];
lazy[rt]=prelazy[rt]=;
}
}
void Push_up(ll rt){
presum[rt]=max(presum[rt*],presum[rt*+]);
sum[rt]=max(sum[rt*],sum[*rt+]);
}
void Update(ll L,ll R,ll l,ll r,ll rt,ll add) {
if(l>=L&&r<=R) {
lazy[rt]+=add;
sum[rt]+=add;
prelazy[rt]=max(prelazy[rt],lazy[rt]);
presum[rt]=max(presum[rt],sum[rt]);
return;
}
Push_down(rt);
ll m=(r+l)>>;
if(L<=m)Update(L,R,lson,add);
if(R>m) Update(L,R,rson,add);
Push_up(rt);
}
ll Query(ll L,ll R,ll l,ll r,ll rt) {
if(L<=l&&r<=R)return presum[rt];
Push_down(rt);
ll m=(l+r)>>,ans=-;
if(L<=m)ans=max(ans,Query(L,R,lson));
if(R>m)ans=max(ans,Query(L,R,rson));
return ans;
} int main() {
scanf("%lld",&n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
scanf("%lld",&m);
for(int i=;i<m;i++){
scanf("%lld%lld",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q,q+m);
ll cnt=;
for(int i=;i<=n;i++){
Update(pre[a[i]+N]+,i,,n,,a[i]);
pre[a[i]+N]=i;
while(cnt<m&&q[cnt].r==i){
ans[q[cnt].id]=Query(q[cnt].l,q[cnt].r,,n,);
cnt++;
}
}
for(int i=;i<m;i++)printf("%lld ",ans[i]);printf("\n");
return ;
}
SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)的更多相关文章
- bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树
2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 145 ...
- SPOJ GSS2 Can you answer these queries II ——线段树
[题目分析] 线段树,好强! 首先从左往右依次扫描,线段树维护一下f[].f[i]表示从i到当前位置的和的值. 然后询问按照右端点排序,扫到一个位置,就相当于查询区间历史最值. 关于历史最值问题: 标 ...
- SPOJ 1557. Can you answer these queries II 线段树
Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...
- Spoj 1557 Can you answer these queries II 线段树 随意区间最大子段和 不反复数字
题目链接:点击打开链接 每一个点都是最大值,把一整个序列和都压缩在一个点里. 1.普通的区间求和就是维护2个值,区间和Sum和延迟标志Lazy 2.Old 是该区间里出现过最大的Sum, Oldlaz ...
- HDU - 4027 Can you answer these queries?(线段树区间修改)
https://cn.vjudge.net/problem/HDU-4027 题意 给一个有初始值的数组,存在两种操作,T=0时将[L,R]的值求平方根,T=1时查询[L,R]的和. 分析 显然不符合 ...
- SPOJ GSS1_Can you answer these queries I(线段树区间合并)
SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...
- spoj gss2 : Can you answer these queries II 离线&&线段树
1557. Can you answer these queries II Problem code: GSS2 Being a completist and a simplist, kid Yang ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- 【BZOJ2482】[Spoj1557] Can you answer these queries II 线段树
[BZOJ2482][Spoj1557] Can you answer these queries II Description 给定n个元素的序列. 给出m个询问:求l[i]~r[i]的最大子段和( ...
随机推荐
- BZOJ 1040: [ZJOI2008]骑士 | 在基环外向树上DP
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题解: 我AC了 是自己写的 超开心 的 考虑断一条边 这样如果根节点不选答案一定正确 ...
- 【模拟赛·polyline】
Input file: polyline.in Output file: polyline.out Time limit: 1s Memory limit: 128M 有若⼲个类似于下⾯的函数: 定义 ...
- 【NOIP模拟赛】 permutation 数学(打表)
biubiu~~~ 这道题卡读题卡得很死......首先他告诉我们读循环的时候要顺着圈读,然后又说这个圈在数列上要以最大数开始读,而且以这样的循环的首数排序,得到的序列与原序列一样那么他就是可行序列, ...
- taotao用户登录(及登录成功后的回调url处理)
后台Controller: package com.taotao.sso.controller; import org.springframework.stereotype.Controller; i ...
- More on understanding sort_buffer_size
There have been a few posts by Sheeri and Baron today on the MySQL sort_buffer_size variable. I want ...
- hive对有特殊值null的数据倾斜处理
对有特殊值的数据倾斜处理 SET mapred.reduce.tasks=20;SET hive.map.aggr=TRUE;SET hive.groupby.skewindata=TRUE;SET ...
- ext4文件系统由文件的inode号定位其inode Table
在ubuntu中(以16.06为例),stat filename 可以查看文件的inode数值,但是如何确定该inode项具体在哪个块组下的inode Table中不是那么容易,接下来通过一步步计算来 ...
- JS向右弹出DIV,点击可向左隐藏。我用jquery可以从左下角像右上角隐藏,怎么从做向右隐藏呢?
弹出的DIV如果是绝对定位,就用right固定位子,如果不是就用float:right:Jquery中有个函数animate是自定义动画效果,$("#shou").click(fu ...
- Spring表达式语言之SpEL
•Spring 表达式语言(简称SpEL):是一个支持运行时查询和操作对象图的强大的表达式语言. •语法类似于 EL:SpEL 使用 #{…} 作为定界符,所有在大框号中的字符都将被认为是 SpEL ...
- OpenStack环境初始化
环境概述 系统:CentOS_7.2_x64_mininal 因配置有限,本次试验使用三台虚拟机,一台控制节点,一台计算节点,一台网络节点,控制机点配置4G内存,2CPU,其他节点都2G内存,一个C ...