853C - Boredom

题意

给出一个矩阵,每行每列有且仅有一个点。每次询问一个子矩形,问这些点构成的矩形有多少个与给定的矩形相交(两个处于对角线上的点可以组成矩形)。

分析

考虑矩形周围 8 个方向,答案其实就是这些方向上的点的组合。直接去算相交比较麻烦,我们可以考虑去算不相交的矩形的个数,例如上方有 \(x\) 个点,则要减去矩形的个数 \(\frac{x * (x - 1)}{2}\) ,下左右同理,但是这样会多减去左下角、左上角、右上角、右下角四个区域的点组成的矩形的个数,考虑再加回来,那我们实际上就要高效算出这些区域内点的个数。二维平面统计点的个数,上主席树。

再讲讲主席树查询的那部分,和线段树很类似(废话)。为什么它可以统计纵轴方向上某个区间点的个数呢?注意到在插入数据的时候我们是根据值的大小去决定走左边还是右边的,在查询的时候,同样根据值的大小决定走左还是走右(这个值此时是区间端点的值)。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define lson l, m
#define rson m + 1, r
const int MAXN = 2e5 + 10;
int L[MAXN << 5], R[MAXN << 5], sum[MAXN << 5];
int tot;
int f[MAXN];
int build(int l, int r) {
int rt = ++tot;
sum[rt] = 0;
if(l < r) {
int m = l + r >> 1;
L[rt] = build(lson);
R[rt] = build(rson);
}
return rt;
}
int update(int pre, int l, int r, int x) {
int rt = ++tot;
L[rt] = L[pre]; R[rt] = R[pre]; sum[rt] = sum[pre] + 1;
if(l < r) {
int m = l + r >> 1;
if(x <= m) L[rt] = update(L[pre], lson, x);
else R[rt] = update(R[pre], rson, x);
}
return rt;
}
ll query(int ql, int qr, int l_, int r_, int l, int r) {
if(l >= l_ && r <= r_) return sum[qr] - sum[ql];
int m = (l + r) / 2;
ll res = 0;
if(m >= l_) res += query(L[ql], L[qr], l_, r_, lson);
if(m < r_) res += query(R[ql], R[qr], l_, r_, rson);
return res;
}
ll cal(ll x) { return x * (x - 1) / 2; }
int main() {
tot = 0;
int n, q;
scanf("%d%d", &n, &q);
f[0] = build(1, n);
for(int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
f[i] = update(f[i - 1], 1, n, x);
}
while(q--) {
int l, d, r, u;
scanf("%d%d%d%d", &l, &d, &r, &u);
ll res = cal(n) - cal(l - 1) - cal(n - r) - cal(d - 1) - cal(n - u);
if(d > 1) {
res += cal(query(f[0], f[l - 1], 1, d - 1, 1, n));
res += cal(query(f[r], f[n], 1, d - 1, 1, n));
}
if(u < n) {
res += cal(query(f[0], f[l - 1], u + 1, n, 1, n));
res += cal(query(f[r], f[n], u + 1, n, 1, n));
}
printf("%I64d\n", res);
}
return 0;
}

Codeforces 853C - Boredom的更多相关文章

  1. [Codeforces Round #433][Codeforces 853C/854E. Boredom]

    题目链接:853C - Boredom/854E - Boredom 题目大意:在\(n\times n\)的方格中,每一行,每一列都恰有一个被标记的方格,称一个矩形为漂亮的当且仅当这个矩形有两个角是 ...

  2. CodeForces 456-C Boredom

    题目链接:CodeForces -456C Description Alex doesn't like boredom. That's why whenever he gets bored, he c ...

  3. CodeForces 455A Boredom (DP)

    Boredom 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/G Description Alex doesn't like b ...

  4. Codeforces 455A - Boredom - [DP]

    题目链接:https://codeforces.com/problemset/problem/455/A 题意: 给出一个 $n$ 个数字的整数序列 $a[1 \sim n]$,每次你可以选择一个 $ ...

  5. Codeforces 445A Boredom(DP+单调队列优化)

    题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...

  6. Codeforces 455A Boredom (线性DP)

    <题目链接> 题目大意:给定一个序列,让你在其中挑选一些数,如果你选了x,那么你能够得到x分,但是该序列中所有等于x-1和x+1的元素将全部消失,问你最多能够得多少分. 解题分析:从小到大 ...

  7. Codeforces 455A Boredom 取数字的dp

    题目链接:点击打开链接 给定一个n长的序列 删除x这个数就能获得x * x的个数 的分数,然后x+1和x-1这2个数会消失.即无法获得这2个数的分数 问最高得分. 先统计每一个数出现的次数.然后dp一 ...

  8. Codeforces Round #260 (Div. 1) A - Boredom DP

    A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...

  9. DP Codeforces Round #260 (Div. 1) A. Boredom

    题目传送门 /* 题意:选择a[k]然后a[k]-1和a[k]+1的全部删除,得到点数a[k],问最大点数 DP:状态转移方程:dp[i] = max (dp[i-1], dp[i-2] + (ll) ...

随机推荐

  1. hdu6121 build a tree(树)

    题解: 可以考虑每一层结点的子树大小 必定满足下面的情况,即 a,a,a,a,a,a,b,c,c,c,c........ 然后每一层依次往上更新,结果是不变的 一共有logn层,所以依次扫上去,统计结 ...

  2. hdu 6203 ping ping ping(LCA+树状数组)

    hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...

  3. [SCOI2012]喵星球上的点名——堪称十种方法做的题

    题意: 给你N个串对,M个询问串,对每个询问串求是多少串对的子串(在串对的某一个中作为子串),以及每个串对最终是包含了多少询问串 方法众多.. 可谓字符串家族八仙过海各显神通. 复杂度不尽相同,O(n ...

  4. 【NOIP模拟赛】超级树 DP

    这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...

  5. 用PHP迭代器来实现一个斐波纳契数列

    斐波纳契数列通常做法是用递归实现,当然还有其它的方法.这里现学现卖,用PHP的迭代器来实现一个斐波纳契数列,几乎没有什么难度,只是把类里的next()方法重写了一次.注释已经写到代码中,也是相当好理解 ...

  6. Spring事务管理—aop:pointcut expression 常见切入点表达式及事务说明

    Spring事务管理—aop:pointcut expression 常见切入点表达式及事物说明 例: <aop:config>  <aop:pointcut expression= ...

  7. Codis+redis 集群测试

    Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有显著区别 (不支持的命令列表), 上层应用可以像使用 ...

  8. import pymongo exceptions.ImportError: No module named pymongo

    最近用Scrapy写爬虫,将爬取的数据存入Mongodb中,使用的是pymongo这个库,但是运行的时候报错如标题所示 搜了好多网站包括stackoverflow都没有解决,后来发现自己用的是虚拟环境 ...

  9. Virtualization solutions on Linux systems - KVM and VirtualBox

    Introduction Virtualization packages are means for users to run various operating systems without &q ...

  10. 使用vue做移动app时,调用摄像头扫描二维码

    现在前端技术发展飞快,前端都能做app了,那么项目中,也会遇到调用安卓手机基层的一些功能,比如调用摄像头,完成扫描二维码功能 下面我就为大家讲解一下,我在项目中调用这功能的过程. 首先我们需要一个中间 ...